59 resultados para Slot-based task-splitting algorithms
Resumo:
Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.
Resumo:
An engineering design environment should allow users to design complex engineering systems, to manage and coordinate the designs as they proceed, and to develop and modify the software tools used for designs. These requirements call for a programming environment with an integrated set of software tools of different functionalities. The required functionalities are mainly: the provision of design algorithms based on suitable numeric software, appropriate data structures for the application area, a user-friendly interface, and the provision of a design database for the long term management of the designs generated. The provision of such an integrated design environment in a functional programming environment with particular emphasis on the provision of appropriate control-theoretic data structures and data model is described. Object-orientation is used to model entities in the application domain, which are represented by persistent objects in the database. Structural properties, relationships and operations on entities are modelled through objects and functions classified into strict types with inheritance semantics and a recursive structure.
Resumo:
We have developed a novel human facial tracking system that operates in real time at a video frame rate without needing any special hardware. The approach is based on the use of Lie algebra, and uses three-dimensional feature points on the targeted human face. It is assumed that the roughly estimated facial model (relative coordinates of the three-dimensional feature points) is known. First, the initial feature positions of the face are determined using a model fitting technique. Then, the tracking is operated by the following sequence: (1) capture the new video frame and render feature points to the image plane; (2) search for new positions of the feature points on the image plane; (3) get the Euclidean matrix from the moving vector and the three-dimensional information for the points; and (4) rotate and translate the feature points by using the Euclidean matrix, and render the new points on the image plane. The key algorithm of this tracker is to estimate the Euclidean matrix by using a least square technique based on Lie algebra. The resulting tracker performed very well on the task of tracking a human face.
Resumo:
Although partially observable Markov decision processes (POMDPs) have shown great promise as a framework for dialog management in spoken dialog systems, important scalability issues remain. This paper tackles the problem of scaling slot-filling POMDP-based dialog managers to many slots with a novel technique called composite point-based value iteration (CSPBVI). CSPBVI creates a "local" POMDP policy for each slot; at runtime, each slot nominates an action and a heuristic chooses which action to take. Experiments in dialog simulation show that CSPBVI successfully scales POMDP-based dialog managers without compromising performance gains over baseline techniques and preserving robustness to errors in user model estimation. Copyright © 2006, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.
Resumo:
This Chapter presents a vision-based system for touch-free interaction with a display at a distance. A single camera is fixed on top of the screen and is pointing towards the user. An attention mechanism allows the user to start the interaction and control a screen pointer by moving their hand in a fist pose directed at the camera. On-screen items can be chosen by a selection mechanism. Current sample applications include browsing video collections as well as viewing a gallery of 3D objects, which the user can rotate with their hand motion. We have included an up-to-date review of hand tracking methods, and comment on the merits and shortcomings of previous approaches. The proposed tracker uses multiple cues, appearance, color, and motion, for robustness. As the space of possible observation models is generally too large for exhaustive online search, we select models that are suitable for the particular tracking task at hand. During a training stage, various off-the-shelf trackers are evaluated. From this data differentmethods of fusing them online are investigated, including parallel and cascaded tracker evaluation. For the case of fist tracking, combining a small number of observers in a cascade results in an efficient algorithm that is used in our gesture interface. The system has been on public display at conferences where over a hundred users have engaged with it. © 2010 Springer-Verlag Berlin Heidelberg.
Resumo:
Model based compensation schemes are a powerful approach for noise robust speech recognition. Recently there have been a number of investigations into adaptive training, and estimating the noise models used for model adaptation. This paper examines the use of EM-based schemes for both canonical models and noise estimation, including discriminative adaptive training. One issue that arises when estimating the noise model is a mismatch between the noise estimation approximation and final model compensation scheme. This paper proposes FA-style compensation where this mismatch is eliminated, though at the expense of a sensitivity to the initial noise estimates. EM-based discriminative adaptive training is evaluated on in-car and Aurora4 tasks. FA-style compensation is then evaluated in an incremental mode on the in-car task. © 2011 IEEE.
Resumo:
For many realistic scenarios, there are multiple factors that affect the clean speech signal. In this work approaches to handling two such factors, speaker and background noise differences, simultaneously are described. A new adaptation scheme is proposed. Here the acoustic models are first adapted to the target speaker via an MLLR transform. This is followed by adaptation to the target noise environment via model-based vector Taylor series (VTS) compensation. These speaker and noise transforms are jointly estimated, using maximum likelihood. Experiments on the AURORA4 task demonstrate that this adaptation scheme provides improved performance over VTS-based noise adaptation. In addition, this framework enables the speech and noise to be factorised, allowing the speaker transform estimated in one noise condition to be successfully used in a different noise condition. © 2011 IEEE.
Resumo:
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model. © 2011 Elsevier Ltd.
Resumo:
A computer can assist the process of design by analogy by recording past designs. The experience these represent could be much wider than that of designers using the system, who therefore need to identify potential cases of interest. If the computer assists with this lookup, the designers can concentrate on the more interesting aspect of extracting and using the ideas which are found. However, as the knowledge base grows it becomes ever harder to find relevant cases using a keyword indexing scheme without knowing precisely what to look for. Therefore a more flexible searching system is needed.
If a similarity measure can be defined for the features of the designs, then it is possible to match and cluster them. Using a simple measure like co-occurrence of features within a particular case would allow this to happen without human intervention, which is tedious and time- consuming. Any knowledge that is acquired about how features are related to each other will be very shallow: it is not intended as a cognitive model for how humans understand, learn, or retrieve information, but more an attempt to make effective, efficient use of the information available. The question remains of whether such shallow knowledge is sufficient for the task.
A system to retrieve information from a large database is described. It uses co-occurrences to relate keywords to each other, and then extends search queries with similar words. This seems to make relevant material more accessible, providing hope that this retrieval technique can be applied to a broader knowledge base.
Resumo:
Hidden Markov model (HMM)-based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to estimate the transcription of the adaptation data. This paper first presents an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for such supplementary acoustic models. This is achieved by defining a mapping between HMM-based synthesis models and ASR-style models, via a two-pass decision tree construction process. Second, it is shown that this mapping also enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data. Third, this paper demonstrates how this technique lends itself to the task of unsupervised cross-lingual adaptation of HMM-based speech synthesis models, and explains the advantages of such an approach. Finally, listener evaluations reveal that the proposed unsupervised adaptation methods deliver performance approaching that of supervised adaptation.
Resumo:
Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
In most recent substructuring methods, a fundamental role is played by the coarse space. For some of these methods (e.g. BDDC and FETI-DP), its definition relies on a 'minimal' set of coarse nodes (sometimes called corners) which assures invertibility of local subdomain problems and also of the global coarse problem. This basic set is typically enhanced by enforcing continuity of functions at some generalized degrees of freedom, such as average values on edges or faces of subdomains. We revisit existing algorithms for selection of corners. The main contribution of this paper consists of proposing a new heuristic algorithm for this purpose. Considering faces as the basic building blocks of the interface, inherent parallelism, and better robustness with respect to disconnected subdomains are among features of the new technique. The advantages of the presented algorithm in comparison to some earlier approaches are demonstrated on three engineering problems of structural analysis solved by the BDDC method.
Resumo:
This paper is in two parts and addresses two of getting more information out of the RF signal from three-dimensional (3D) mechanically-swept medical ultrasound . The first topic is the use of non-blind deconvolution improve the clarity of the data, particularly in the direction to the individual B-scans. The second topic is imaging. We present a robust and efficient approach to estimation and display of axial strain information. deconvolution, we calculate an estimate of the point-spread at each depth in the image using Field II. This is used as of an Expectation Maximisation (EM) framework in which ultrasound scatterer field is modelled as the product of (a) a smooth function and (b) a fine-grain varying function. the E step, a Wiener filter is used to estimate the scatterer based on an assumed piecewise smooth component. In the M , wavelet de-noising is used to estimate the piecewise smooth from the scatterer field. strain imaging, we use a quasi-static approach with efficient based algorithms. Our contributions lie in robust and 3D displacement tracking, point-wise quality-weighted , and a stable display that shows not only strain but an indication of the quality of the data at each point in the . This enables clinicians to see where the strain estimate is and where it is mostly noise. deconvolution, we present in-vivo images and simulations quantitative performance measures. With the blurred 3D taken as OdB, we get an improvement in signal to noise ratio 4.6dB with a Wiener filter alone, 4.36dB with the ForWaRD and S.18dB with our EM algorithm. For strain imaging show images based on 2D and 3D data and describe how full D analysis can be performed in about 20 seconds on a typical . We will also present initial results of our clinical study to explore the applications of our system in our local hospital. © 2008 IEEE.