18 resultados para Single Point Mutations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of large grain Y-Ba-Cu-O (YBCO) bulk superconductors fabricated by top seeded melt growth (TSMG) has been investigated. Seeding bulk samples with small, square shaped seed crystals leads to point nucleation and growth of the superconducting YBa2Cu3O7-y (Y-123) phase that exhibits the usual square habitual growth symmetry. The use of triangular and circular shaped seed crystals, however, modifies significantly the growth habit geometry of the grain. The use of large area seeds both increases the rate of epitaxial nucleation of the Y-123 phase and produces relatively large crystals in the incongruent melt, which decreases significantly the processing times of large grain samples. The present study is relevant to decrease processing times of samples with both preferred or no growth sectors and for multiple seeding of large grain samples which contain clean grain boundaries. © 2005 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has developed learning mechanisms to deal with and compensate for the constantly changing dynamics of the world. If this mechanism or mechanisms can be understood from a computational point of view, then they can also be used to drive the adaptability and learning of robots. In this paper, we will present a new technique for examining changes in the feedforward motor command due to adaptation. This technique can then be utilized for examining motor adaptation in humans and determining a computational algorithm which explains motor learning. © 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that catalyst pretreatment conditions can have a profound effect on the chiral distribution in single-walled carbon nanotube chemical vapor deposition. Using a SiO2-supported cobalt model catalyst and pretreatment in NH3, we obtain a comparably narrowed chiral distribution with a downshifted tube diameter range, independent of the hydrocarbon source. Our findings demonstrate that the state of the catalyst at the point of carbon nanotube nucleation is of fundamental importance for chiral control, thus identifying the pretreatment atmosphere as a key parameter for control of diameter and chirality distributions. © 2014 American Chemical Society.