34 resultados para Sensory liking
Resumo:
Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.
Resumo:
Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
Resumo:
Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory synapses. We show that this mechanism provides an explanation for the sparse firing patterns observed in response to natural stimuli and fits well with a recently observed interaction of excitatory and inhibitory receptive field plasticity. The introduction of inhibitory plasticity in suitable recurrent networks provides a homeostatic mechanism that leads to asynchronous irregular network states. Further, it can accommodate synaptic memories with activity patterns that become indiscernible from the background state but can be reactivated by external stimuli. Our results suggest an essential role of inhibitory plasticity in the formation and maintenance of functional cortical circuitry.
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.
Resumo:
Human sensorimotor control has been predominantly studied using fixed tasks performed under laboratory conditions. This approach has greatly advanced our understanding of the mechanisms that integrate sensory information and generate motor commands during voluntary movement. However, experimental tasks necessarily restrict the range of behaviors that are studied. Moreover, the processes studied in the laboratory may not be the same processes that subjects call upon during their everyday lives. Naturalistic approaches thus provide an important adjunct to traditional laboratory-based studies. For example, wearable self-contained tracking systems can allow subjects to be monitored outside the laboratory, where they engage spontaneously in natural everyday behavior. Similarly, advances in virtual reality technology allow laboratory-based tasks to be made more naturalistic. Here, we review naturalistic approaches, including perspectives from psychology and visual neuroscience, as well as studies and technological advances in the field of sensorimotor control.
Resumo:
Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.
Resumo:
Learning is often understood as an organism's gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments.
Resumo:
Although learning a motor skill, such as a tennis stroke, feels like a unitary experience, researchers who study motor control and learning break the processes involved into a number of interacting components. These components can be organized into four main groups. First, skilled performance requires the effective and efficient gathering of sensory information, such as deciding where and when to direct one's gaze around the court, and thus an important component of skill acquisition involves learning how best to extract task-relevant information. Second, the performer must learn key features of the task such as the geometry and mechanics of the tennis racket and ball, the properties of the court surface, and how the wind affects the ball's flight. Third, the player needs to set up different classes of control that include predictive and reactive control mechanisms that generate appropriate motor commands to achieve the task goals, as well as compliance control that specifies, for example, the stiffness with which the arm holds the racket. Finally, the successful performer can learn higher-level skills such as anticipating and countering the opponent's strategy and making effective decisions about shot selection. In this Primer we shall consider these components of motor learning using as an example how we learn to play tennis.
Resumo:
When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.
Resumo:
Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was different across the pair. When each perturbation direction was associated with a different bimanual context, such as movement of the arms in the same direction versus movement in the opposite direction, interference was dramatically reduced. This occurred over a short period of training and was seen for both dynamic and visuomotor perturbations, suggesting a partitioning of motor learning for the different bimanual contexts. Further support for this was found in a series of transfer experiments. Having learned a single dynamic or visuomotor perturbation in one bimanual context, subjects showed incomplete transfer of this learning when the context changed, even though the perturbation remained the same. In addition, we examined a bimanual context in which one arm was moved passively and show that the reduction in interference requires active movement. The sensory consequences of movement are thus insufficient to allow opposing perturbations to be co-represented. Our results suggest different bimanual movement contexts engage at least partially separate representations of dynamics and kinematics in the motor system.
Resumo:
Humans use their arms to engage in a wide variety of motor tasks during everyday life. However, little is known about the statistics of these natural arm movements. Studies of the sensory system have shown that the statistics of sensory inputs are key to determining sensory processing. We hypothesized that the statistics of natural everyday movements may, in a similar way, influence motor performance as measured in laboratory-based tasks. We developed a portable motion-tracking system that could be worn by subjects as they went about their daily routine outside of a laboratory setting. We found that the well-documented symmetry bias is reflected in the relative incidence of movements made during everyday tasks. Specifically, symmetric and antisymmetric movements are predominant at low frequencies, whereas only symmetric movements are predominant at high frequencies. Moreover, the statistics of natural movements, that is, their relative incidence, correlated with subjects' performance on a laboratory-based phase-tracking task. These results provide a link between natural movement statistics and motor performance and confirm that the symmetry bias documented in laboratory studies is a natural feature of human movement.
Resumo:
Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the prior over visuomotor transformations--the mapping between actual and visual location of the hand--during a learning task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a Bayesian observer model in order to infer the covariance structure of the subjects' prior, which was found to give high probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover, through experience of a novel task structure, participants can appropriately alter the covariance structure of their prior.
Resumo:
In this paper, a novel approach to Petri net modeling of programmable logic controller (PLC) programs is presented. The modeling approach is a simple extension of elementary net systems, and a graphical design tool that supports the use of this modeling approach is provided. A key characteristic of the model is that the binary sensory inputs and binary actuation outputs of the PLC are explicitly represented. This leads to the following two improvements: outputs are unambiguous, and interaction patterns are more clearly represented in the graphical form. The use of this modeling approach produces programs that are simple, lightweight, and portable. The approach is demonstrated by applying it to the development of a control module for a MonTech Positioning Station. © 2008 IEEE.