34 resultados para Semiconducting cadmium compounds
Resumo:
Some 1R,4R-2-(4-phenylbenzylidene)-p-menthane-3-one derivatives containing the ether or ester linking group between benzene rings of the arylidene fragment have been studied as chiral dopants in ferroelectric liquid crystal systems based on the eutectic mixture (1:1) of two phenylbenzoate derivatives CmH2m+1OC6H4COOC6 H4OCnH2n+1 (n = 6; m = 8, 10). The ferroelectric properties of these compositions (spontaneous polarization, rotation viscosity, smectic tilt angle as well as quantitative characteristics of their concentration dependences) were compared with those for systems including chiral dopants containing no linking group. Ferroelectric parameters of the induced ferroelectric compositions studied have been shown to depend essentially on the presence of the linking group between benzene rings and its nature as well as on the number of the benzene rings in the rigid molecular core of the chiral dopants used. For all ferroelectric liquid crystal systems studied, the influence of the chiral dopants on the thermal stability of N*, SmA and SmC* mesophases has been quantified. The influence of the linking group nature in the dopant molecules on the characteristics of the systems studied is discussed taking into account results of the conformational analysis carried out by the semi-empirical AM1 and PM3 methods.
Resumo:
A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1). © 2010 IOP Publishing Ltd.
Resumo:
This article presents a laboratory study on the consequences of the application of combined soil stabilization and bioaugmentation in the remediation of a model contaminated soil. Stabilization and bioaugmentation are two techniques commonly applied independently for the remediation of heavy metal and organic contamination respectively. However, for a cocktail of contaminants combined treatments are currently being considered. The model soil was contaminated with a cocktail of organics and heavy metals based on the soil and contaminant conditions in a real contaminated site. The soil stabilization treatment was applied using either zeolite or green waste compost as additives and a commercially available hydrocarbon degrading microbial consortium was used for the bioaugmentation treatment. The effects of stabilization with or without bioaugmentation on the leachability of cadmium and copper was observed using an EU batch leaching test procedure and a flow-through column leaching test, both using deionized water at a pH of 5.6. In addition, the population of hydrocarbon degrading microorganisms was monitored using a modified plate count procedure in cases where bioaugmentation was applied. It was found that while the stabilization treatment reduced the metal leachability by up to 60%, the bioaugmentation treatment increased it by up to 100% Microbial survival was also higher in the stabilized soil samples.
Resumo:
The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.
Metal-polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors
Resumo:
A new type of chemi-resistor based on a novel metal-polymer composite is described. The composite contains nickel particles with sharp nano-scale surface features, which are intimately coated by the polymer matrix so that they do not come into direct physical contact. No conductive chains of filler particles are formed even at loadings above the percolation threshold and the composite is intrinsically insulating. However, when subjected to compression the composite becomes conductive, with sample resistance falling from ≥ 1012 Ω to < 0.01 Ω. The composite can be formed into insulating granules, which display similar properties to the bulk form. A bed of granules compressed between permeable frits provides a porous structure with a start resistance set by the degree of compression while the granules are free to swell when exposed to volatile organic compounds (VOCs). The granular bed presents a large surface area for the adsorption of VOCs from the gas stream flowing through it. The response of this system to a variety of vapours has been studied for two different sizes of the granular bed and for different matrix polymers. Large responses, ΔR/R0 ≥ 10^7, are observed when saturated vapours are passed through the chemi-resistor. Rapid response allows real time sensing of VOCs and the initial state is recovered in a few seconds by purging with an inert gas stream. The variation in response as a function of VOC concentration is determined.
Resumo:
We present results on laser action from liquid crystal compounds whereby one sub-unit of the molecular structure consists of the cyano-substituted chromophore, {phenylene-bis (2-cyanopropene)}, similar to the basic unit of the semiconducting polymer structure poly(cyanoterephthalylidene). These compounds were found to exhibit nematic liquid crystal phases. In addition, by virtue of the liquid crystalline properties, the compounds were found to be highly miscible in wide temperature range commercial nematogen mixtures. When optically excited at λ = 355 nm, laser emission was observed in the blue/green region of the visible spectrum (480-530 nm) and at larger concentrations by weight than is achievable using conventional laser dyes. Upon increasing the concentration of dye from 2 to 5 wt.% the threshold was found to increase from Eth = 0.42 ± 0.02 μJ/pulse (≈20 mJ/cm2) to Eth = 0.66 ± 0.03 μJ/pulse (≈34 mJ/cm2). Laser emission was also observed at concentrations of 10 wt.% but was less stable than that observed for lower concentrations of the chromophore. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Synthesis of polycationic compounds by the spray-drying technique is an interesting alternative in the domain of aqueous precursor synthesis methods. Spray drying yields high quality samples with good reproducibility. The possibility of scaling up for production of large quantities with fast processing time is well established by the commercial availability of powders of various compositions. In this paper, we have discussed the advantages and limitations of this method and demonstrated its interest by synthesizing a few polycationic compounds selected for their attractive properties of thermoelectricity [Bi1.68Ca2Co1.69O 8, La0.95A0.05CoO3 (A=Ca, Sr, Ba)] or magnetoresistance [La0.70A0.30MnO3 (A=Sr, Ba)]. We have confirmed the quality of these samples by reporting their structure, magnetic and transport properties. © 2010 Elsevier Ltd All rights reserved.
Resumo:
LiMn2-xTixO4 compounds with 0 ≤ x ≤ 1 were prepared by solid state reaction and Pechini technique. Powder X-ray diffraction showed that all samples crystallize with the spinel crystal structure (S.G. Fd3-m). The cubic unit-cell parameter increases with the Ti content. The influence of the Ti content and cationic distribution on the magnetic properties of the compounds was studied by measuring the temperature and magnetic field dependences of the magnetization: substitution by non-magnetic d0 Ti4+ ions appeared to weaken the magnetic interactions between the manganese ions. The electrical properties of LiMnTiO4 were studied by AC impedance spectroscopy and DC polarisation measurements, which revealed the electronic character of the conduction process. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Calcium-substituted lanthanum manganite compounds were synthesized by the spray drying technique. This method - whose main advantages are versatility, high reproducibility and scalability - yields small grain materials of high homogeneity and displaying low-field magnetoresistance effects. We report about the physical and chemical characterizations of these samples in order to investigate the potential interest of spray drying for the production of materials for low-field magnetoresistance applications. We have studied the dependence of the low-field magnetoresistance on the temperature and duration of the thermal treatment applied to the pelletized powders. The issue of the shape anisotropy (demagnetisation effects) influence on the magnetoresistance properties has also been dealt with. © 2005 Springer Science + Business Media, Inc.
Resumo:
In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.