22 resultados para Semiconducting II-VI materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first report of report series I, II and III entitled 'basic principles' presented details of the binders and technologies available and used in the stabilisation/ solidification (S/S) treatment of hazardous waste and contaminated land. This second report entitled 'research' presents an overview of the main research work, both experimental and numerical, carried out in the UK concentrating on the last decade or so but also highlighting earlier significant research work. The research work is reported under the headings of the individual binders and for each binder the work is presented in chronological order. In this work, most of the S/S materials are prepared by manual/mechanical mixing. The latter part of this report presents research work on S/S materials prepared using soil mixing with mixing augers. © 2005 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material production energy by half, while doubling production from the present to 2050. The goal therefore is a 75 per cent reduction in energy intensity. Four technology-based strategies are investigated, regardless of cost: (i) widespread application of best available technology (BAT), (ii) BAT to cutting-edge technologies, (iii) aggressive recycling and finally, and (iv) significant improvements in recycling technologies. Taken together, these aggressive strategies could produce impressive gains, of the order of a 50-56 per cent reduction in energy intensity, but this is still short of our goal of a 75 per cent reduction. Ultimately, we face fundamental thermodynamic as well as practical constraints on our ability to improve the energy intensity of material production. A strategy to reduce demand by providing material services with less material (called 'material efficiency') is outlined as an approach to solving this dilemma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.