164 resultados para Sandwich-panel
Resumo:
Classes of lattice material are reviewed, and their fracture response is explored in the context of the core of a sandwich panel. Attention is focussed on the strength of a sandwich plate with centre-cracked core made from an elastic-brittle square lattice. Predictions are summarised for the un-notched strength of the sandwiched core and for the fracture toughness of the lattice under remote tension, remote compression or remote shear. It is assumed that the lattice fails when the local stress in the cell walls attains the tensile or compressive strength of the solid, or when local buckling occurs. The local failure mechanism that dictates the unnotched strength may be different from that dictating the fracture toughness. Fracture mechanism maps are generated in order to reveal the dominant local failure mechanism for any given cell wall material.
Resumo:
A sandwich panel with a core made from solid pyramidal struts is a promising candidate for multifunctional application such as combined structural and heat-exchange function. This study explores the performance enhancement by making use of hollow struts, and examines the elevation in the plastic buckling strength by either strain hardening or case hardening. Finite element simulations are performed to quantify these enhancements. Also, the sensitivity of competing collapse modes to tube geometry and to the depth of case hardening is determined. A comparison with other lattice materials reveals that the pyramidal lattice made from case hardened steel tubes outperforms lattices made from solid struts of aluminium or titanium and has a comparable strength to a core made from carbon fibre reinforced polymers. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.
Resumo:
Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.
Resumo:
The Cambridge University's Gordon Laboratory, in collaboration with Fibertech and the Defence Science and Technology Laboratory in the UK, has developed a novel melt spun fiber bore called 'Fibrecore', fabricated entirely from stainless steel with thin faceplates. Fibrecore is typically manufactured by 5mm-long and 70μm thick stainless steel fibers, produced by a melt overflow process. Its entirely metallic construction allows spot welding and tungsten inert gas welding without difficulty. Fibrecore exhibits different energy absorption mechanisms such as core cushioning, core-faceplate delamination, and plastic faceplate deformation, often in a concertina-like fashion. Its low-cost, high structural efficiency and good energy absorption characteristics make it attractive for a range of commercial and military applications. Such applications being evaluated include vehicle body panels, exhaust system noise reduction, low cost filters, and lightweight physical protection. In addition to these characteristics, Fibrecore exhibits properties such as corrosion protection, vibrational damping, and thermal insulation, which also extend its applications.
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.