32 resultados para SKIN DISEASES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for measuring the coefficient of friction between nonwoven materials and the curved surface of the volar forearm has been developed and validated. The method was used to measure the coefficient of static friction for three different nonwoven materials on the normal (dry) and over-hydrated volar forearms of five female volunteers (ages 18-44). The method proved simple to run and had good repeatability: the coefficient of variation (standard deviation expressed as a percentage of the mean) for triplets of repeat measurements was usually (80 per cent of the time) less than 10 per cent. Measurements involving the geometrically simpler configuration of pulling a weighted fabric sample horizontally across a quasi-planar area of volar forearm skin proved experimentally more difficult and had poorer repeatability. However, correlations between values of coefficient of static friction derived using the two methods were good (R = 0.81 for normal (dry) skin, and 0.91 for over-hydrated skin). Measurements of the coefficient of static friction for the three nonwovens for normal (dry) and for over-hydrated skin varied in the ranges of about 0.3-0.5 and 0.9-1.3, respectively. In agreement with Amontons' law, coefficients of friction were invariant with normal pressure over the entire experimental range (0.1-8.2 kPa).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin biothermomechanics is highly interdisciplinary, involving bioheat transfer, burn damage, biomechanics, and physiology. Characterization of the thermomechanical behavior of skin tissue is of great importance and can contribute to a variety of medical applications. However, few quantitative studies have been conducted on the thermally-dependent mechanical properties of skin tissue. The aim of the present study is to experimentally examine the thermally-induced change in the relaxation behavior of skin tissue in both hyperthermal and hypothermic ranges. The results show that temperature has great influence on the stress-relaxation behavior of skin tissue under both hyperthermal and hypothermic temperatures; the quantitative relationship that has been found between temperature and the viscoelastic parameter (the elastic fraction or fractional energy dissipation) was temperature dependent, with greatest dissipation at high temperature levels.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: