32 resultados para SEMISIMPLE FINITE-DIMENSIONAL JORDAN SUPERALGEBRA
Resumo:
In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic shock-tube tests are used to compare the new schemes with several well-known second-order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second-order Roe scheme with MUSCL flux splitting.
Resumo:
We present a method of rapidly producing computer-generated holograms that exhibit geometric occlusion in the reconstructed image. Conceptually, a bundle of rays is shot from every hologram sample into the object volume.We use z buffering to find the nearest intersecting object point for every ray and add its complex field contribution to the corresponding hologram sample. Each hologram sample belongs to an independent operation, allowing us to exploit the parallel computing capability of modern programmable graphics processing units (GPUs). Unlike algorithms that use points or planar segments as the basis for constructing the hologram, our algorithm's complexity is dependent on fixed system parameters, such as the number of ray-casting operations, and can therefore handle complicated models more efficiently. The finite number of hologram pixels is, in effect, a windowing function, and from analyzing the Wigner distribution function of windowed free-space transfer function we find an upper limit on the cone angle of the ray bundle. Experimentally, we found that an angular sampling distance of 0:01' for a 2:66' cone angle produces acceptable reconstruction quality. © 2009 Optical Society of America.
Resumo:
Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.
Resumo:
This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier-Stokes equations with k-ε turbulence modeling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.
Resumo:
A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The coupling between both models is performed by imposing no-slip boundary conditions on the surface of the cilia. The performance of the model is verified using various reference problems available in the literature. The model is used to simulate the fluid flow due to magnetically actuated artificial cilia. The results show that narrow and closely spaced cilia create the largest flow, that metachronal waves along the width of the cilia create a significant flow in the direction of the cilia width and that the recovery stroke in the case of the out-of-plane actuation of the cilia strongly depends on the cilia width. © 2012 Cambridge University Press.
Resumo:
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.