27 resultados para SECRETORY CAVITIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We exfoliate graphite in both aqueous and non-aqueous environments through mild sonication followed by centrifugation. The dispersions are enriched with monolayers. We mix them with polymers, followed by slow evaporation to produce optical quality composites. Nonlinear optical measurements show similar to 5% saturable absorption. The composites are then integrated into fiber laser cavities to generate 630 fs pulses at 1.56 mu m. This shows the viability of solution phase processing for graphene based photonic devices. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been much progress in recent years in the analysis of complex random vibro-acoustic systems, and general analysis methods have been developed which are based on the properties of diffuse wave fields. It is shown in the present paper that such methods can also be applied to high frequency EMC problems, avoiding the need for costly full wave solutions to Maxwell's equations in complex cavities. The theory behind the approach is outlined and then applied to the relatively simple case of a wiring system which is subject to reverberant electromagnetic wave excitation. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV). Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb-/-nos2-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb-/-nos2-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093), was >1000-fold attenuated in cybb-/-nos2-/- mice and ≈100 fold attenuated in tnfr1-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA) response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety. © 2012 Periaswamy et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluorine redistribution during partial solid-phase-epitaxial-regrowth at 650°C of a preamorphized Si substrate implanted by F was investigated by atom probe tomography (APT), transmission electron microscopy, and secondary ions mass spectrometry. Three-dimensional spatial distribution of F obtained by APT provides a direct observation of F-rich clusters with a diameter of less than 1.5 nm. Density variation compatible with cavities and F-rich molecular ions in correspondence of clusters are in accordance with cavities filled by SiF 4 molecules. Their presence only in crystalline Si while they are not revealed by statistical analysis in amorphous suggests that they form at the amorphous/crystal interface. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the electrical properties of Silicon-on-Insulator photonic crystals as a function of doping level and air filling factor. A very interesting trade-off between conductivity and optical losses in L3 cavities is also found. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of water confined in nanometer-sized cavities is important because, at this scale, a large fraction of hydrogen bonds can be perturbed by interaction with the confining walls. Unusual fluidity properties can thus be expected in the narrow pores, leading to new phenomena like the enhanced fluidity reported in carbon nanotubes. Crystalline mica and amorphous silicon dioxide are hydrophilic substrates that strongly adsorb water. Graphene, on the other hand, interacts weakly with water. This presents the question as to what determines the structure and diffusivity of water when intercalated between hydrophilic substrates and hydrophobic graphene. Using atomic force microscopy, we have found that while the hydrophilic substrates determine the structure of water near its surface, graphene guides its diffusion, favouring growth of intercalated water domains along the C-C bond zigzag direction. Molecular dynamics and density functional calculations are provided to help understand the highly anisotropic water stripe patterns observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell monolayers line most of the surfaces and cavities in the human body. During development and normal physiology, monolayers sustain, detect and generate mechanical stresses, yet little is known about their mechanical properties. We describe a cell culture and mechanical testing protocol for generating freely suspended cell monolayers and examining their mechanical and biological response to uniaxial stretch. Cells are cultured on temporary collagen scaffolds polymerized between two parallel glass capillaries. Once cells form a monolayer covering the collagen and the capillaries, the scaffold is removed with collagenase, leaving the monolayer suspended between the test rods. The suspended monolayers are subjected to stretching by prying the capillaries apart with a micromanipulator. The applied force can be measured for the characterization of monolayer mechanics. Monolayers can be imaged with standard optical microscopy to examine changes in cell morphology and subcellular organization concomitant with stretch. The entire preparation and testing protocol requires 3-4 d.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the design, fabrication, transmission spectrum measurement, and near-field characterization of a parabolic tapered one-dimensional photonic crystal cavity in silicon. The results shows a relatively high quality factor (∼43 000), together with a small modal volume of ∼ 1. 1 (λ/n) 3. Moreover, the design allows repeatable device fabrication, as evident by the similar characteristics obtained for several tens of devices that were fabricated and tested. These demonstrated 1D PhC cavities may be used as a building block in integrated photonic circuits for optical on-chip interconnects and sensing applications. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 μm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.