50 resultados para Robotic manipulators
Resumo:
Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. It is theorized that volume-mass characteristics of these decelerators are superior to those of common supersonic/subsonic parachutes and after deployment they may suffer no instabilities at high Mach numbers. A high fidelity computational fluid-structure interaction model is employed to investigate the behavior of tension cone inflatable aeroshells at supersonic speeds up to Mach 2.0. The computational framework targets the large displacements regime encountered during the inflation of the decelerator using fast level set techniques to incorporate boundary conditions of the moving structure. The preliminary results indicate large but steady aeroshell displacement with rich dynamics, including buckling of the inflatable torus that maintains the decelerator open under normal operational conditions, owing to interactions with the turbulent wake. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. In this paper, we focus on an inflatable tension cone design that has potential advantages over other geometries. A computational fluid-structure interaction model of a tension cone is employed to investigate the behavior of the inflatable aeroshell at supersonic speeds for conditions matching recent experimental results. A parametric study is carried out to investigate the deflections of the tension cone as a function of inflation pressure of the torus at a Mach of 2.5. Comparison of the behavior of the structure, amplitude of deformations, and determined loads are reported. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
In virtual assembly verification or remote maintenance tasks, bimanual haptic interfaces play a crucial role in successful task completion. This paper proposes a method for objectively comparing how well a haptic interface covers the reachable workspace of human arms. Two system configurations are analyzed for a recently introduced haptic device that is based on two DLR-KUKA light weight robots: the standard configuration, where the device is opposite the human operator, and the ergonomic configuration, where the haptic device is mounted behind the human operator. The human operator directly controls the robotic arms using handles. The analysis is performed using a representation of the robot arm workspace. The merits of restricting the comparisons to the most significant regions of the human workspace are discussed. Using this method, a greater workspace correspondence for the ergonomic configuration was shown. ©2010 IEEE.
Resumo:
This study compared the mechanisms of adaptation to stable and unstable dynamics from the perspective of changes in joint mechanics. Subjects were instructed to make point to point movements in force fields generated by a robotic manipulandum which interacted with the arm in either a stable or an unstable manner. After subjects adjusted to the initial disturbing effects of the force fields they were able to produce normal straight movements to the target. In the case of the stable interaction, subjects modified the joint torques in order to appropriately compensate for the force field. No change in joint torque or endpoint force was required or observed in the case of the unstable interaction. After adaptation, the endpoint stiffness of the arm was measured by applying displacements to the hand in eight different directions midway through the movements. This was compared to the stiffness measured similarly during movements in a null force field. After adaptation, the endpoint stiffness under both the stable and unstable dynamics was modified relative to the null field. Adaptation to unstable dynamics was achieved by selective modification of endpoint stiffness in the direction of the instability. To investigate whether the change in endpoint stiffness could be accounted for by change in joint torque or endpoint force, we estimated the change in stiffness on each trial based on the change in joint torque relative to the null field. For stable dynamics the change in endpoint stiffness was accurately predicted. However, for unstable dynamics the change in endpoint stiffness could not be reproduced. In fact, the predicted endpoint stiffness was similar to that in the null force field. Thus, the change in endpoint stiffness seen after adaptation to stable dynamics was directly related to changes in net joint torque necessary to compensate for the dynamics in contrast to adaptation to unstable dynamics, where a selective change in endpoint stiffness occurred without any modification of net joint torque.
Resumo:
Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.
Resumo:
It has been shown that during arm movement, humans selectively change the endpoint stiffness of their arm to compensate for the instability in an unstable environment. When the direction of the instability is rotated with respect to the direction of movement, it was found that humans modify the antisymmetric component of their endpoint stiffness. The antisymmetric component of stiffness arises due to reflex responses suggesting that the subjects may have tuned their reflex responses as part of the feedforward adaptive control. The goal of this study was to examine whether the CNS modulates the gain of the reflex response for selective tuning of endpoint impedance. Subjects performed reaching movements in three unstable force fields produced by a robotic manipulandum, each field differing only in the rotational component. After subjects had learned to compensate for the field, allowing them to make unperturbed movements to the target, the endpoint stiffness of the arm was estimated in the middle of the movements. At the same time electromyographic activity (EMG) of six arm muscles was recorded. Analysis of the EMG revealed differences across force fields in the reflex gain of these muscles consistent with stiffness changes. This study suggests that the CNS modulates the reflex gain as part of the adaptive feedforward command in which the endpoint impedance is selectively tuned to overcome environmental instability. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
As humanoid robots become more commonplace in our society, it is important to understand the relation between humans and humanoid robots. In human face-to-face interaction, the observation of another individual performing an action facilitates the execution of a similar action, and interferes with the execution of different action. This phenomenon has been explained by the existence of shared internal representations for the execution and perception of actions, which would be automatically activated by the perception of another individual's action. In one interference experiment, null interference was reported when subjects observed a robotic arm perform the incongruent task, suggesting that this effect may be specific to interacting with other humans. This experimental paradigm, designed to investigate motor interference in human interactions, was adapted to investigate how similar the implicit perception of a humanoid robot is to a human agent. Subjects performed rhythmic arm movements while observing either a human agent or humanoid robot performing either congruent or incongruent movements. The variance of the executed movements was used as a measure of the amount of interference in the movements. Both the human and humanoid agents produced significant interference effect. These results suggest that observing the action of humanoid robot and human agent may rely on similar perceptual processes. Furthermore, the ratio of the variance in incongruent to congruent conditions varied between the human agent and humanoid robot. We speculate this ratio describes how the implicit perception of a robot is similar to that of a human, so that this paradigm could provide an objective measure of the reaction to different types of robots and be used to guide the design of humanoid robots interacting with humans. © 2004 IEEE.
Resumo:
At an early stage of learning novel dynamics, changes in muscle activity are mainly due to corrective feedback responses. These feedback contributions to the overall motor command are gradually reduced as feedforward control is learned. The temporary increased use of feedback could arise simply from the large errors in early learning with either unaltered gains or even slightly downregulated gains, or from an upregulation of the feedback gains when feedforward prediction is insufficient. We therefore investigated whether the sensorimotor control system alters feedback gains during adaptation to a novel force field generated by a robotic manipulandum. To probe the feedback gains throughout learning, we measured the magnitude of involuntary rapid visuomotor responses to rapid shifts in the visual location of the hand during reaching movements. We found large increases in the magnitude of the rapid visuomotor response whenever the dynamics changed: both when the force field was first presented, and when it was removed. We confirmed that these changes in feedback gain are not simply a byproduct of the change in background load, by demonstrating that this rapid visuomotor response is not load sensitive. Our results suggest that when the sensorimotor control system experiences errors, it increases the gain of the visuomotor feedback pathways to deal with the unexpected disturbances until the feedforward controller learns the appropriate dynamics. We suggest that these feedback gains are upregulated with increased uncertainty in the knowledge of the dynamics to counteract any errors or disturbances and ensure accurate and skillful movements.
Resumo:
The consistency of laboratory sand model preparation for physical testing is a fundamental criterion in representing identical geotechnical issues at prototype scale. This objective led to the development of robotic apparatus to eliminate the non-uniformity in manual pouring. Previous studies have shown consistent sand models with high relative density between 50 to 90% produced by the automatic moving-hopper sand pourer at the University of Cambridge, based primarily on a linear correlation to flow rate. However, in the case of loose samples, the influence of other parameters, particularly the drop height, becomes more apparent. In this paper, findings on the effect of flow rate and drop height are discussed in relation to the layer thickness and relative density of loose sand samples. Design charts are presented to illustrate their relationships. The effect of these factors on different sand types is also covered to extend the use of the equipment. © 2010 Taylor & Francis Group, London.
Resumo:
The interplay between robotics and neuromechanics facilitates discoveries in both fields: nature provides roboticists with design ideas, while robotics research elucidates critical features that confer performance advantages to biological systems. Here, we explore a system particularly well suited to exploit the synergies between biology and robotics: high-speed antenna-based wall following of the American cockroach (Periplaneta americana). Our approach integrates mathematical and hardware modeling with behavioral and neurophysiological experiments. Specifically, we corroborate a prediction from a previously reported wall-following template - the simplest model that captures a behavior - that a cockroach antenna-based controller requires the rate of approach to a wall in addition to distance, e.g., in the form of a proportional-derivative (PD) controller. Neurophysiological experiments reveal that important features of the wall-following controller emerge at the earliest stages of sensory processing, namely in the antennal nerve. Furthermore, we embed the template in a robotic platform outfitted with a bio-inspired antenna. Using this system, we successfully test specific PD gains (up to a scale) fitted to the cockroach behavioral data in a "real-world" setting, lending further credence to the surprisingly simple notion that a cockroach might implement a PD controller for wall following. Finally, we embed the template in a simulated lateral-leg-spring (LLS) model using the center of pressure as the control input. Importantly, the same PD gains fitted to cockroach behavior also stabilize wall following for the LLS model. © 2008 IEEE.
Resumo:
Zeno behavior is a dynamic phenomenon unique to hybrid systems in which an infinite number of discrete transitions occurs in a finite amount of time. This behavior commonly arises in mechanical systems undergoing impacts and optimal control problems, but its characterization for general hybrid systems is not completely understood. The goal of this paper is to develop a stability theory for Zeno hybrid systems that parallels classical Lyapunov theory; that is, we present Lyapunov-like sufficient conditions for Zeno behavior obtained by mapping solutions of complex hybrid systems to solutions of simpler Zeno hybrid systems defined on the first quadrant of the plane. These conditions are applied to Lagrangian hybrid systems, which model mechanical systems undergoing impacts, yielding simple sufficient conditions for Zeno behavior. Finally, the results are applied to robotic bipedal walking. © 2012 IEEE.
Resumo:
Gaussian processes are gaining increasing popularity among the control community, in particular for the modelling of discrete time state space systems. However, it has not been clear how to incorporate model information, in the form of known state relationships, when using a Gaussian process as a predictive model. An obvious example of known prior information is position and velocity related states. Incorporation of such information would be beneficial both computationally and for faster dynamics learning. This paper introduces a method of achieving this, yielding faster dynamics learning and a reduction in computational effort from O(Dn2) to O((D - F)n2) in the prediction stage for a system with D states, F known state relationships and n observations. The effectiveness of the method is demonstrated through its inclusion in the PILCO learning algorithm with application to the swing-up and balance of a torque-limited pendulum and the balancing of a robotic unicycle in simulation. © 2012 IEEE.
Resumo:
To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon's performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°. © 2012 Springer Science+Business Media, LLC.
Resumo:
At the crossing between motor control neuroscience and robotics system theory, the paper presents a rhythmic experiment that is amenable both to handy laboratory implementation and simple mathematical modeling. The experiment is based on an impact juggling task, requiring the coordination of two upper-limb effectors and some phase-locking with the trajectories of one or several juggled objects. We describe the experiment, its implementation and the mathematical model used for the analysis. Our underlying research focuses on the role of sensory feedback in rhythmic tasks. In a robotic implementation of our experiment, we study the minimum feedback that is required to achieve robust control. A limited source of feedback, measuring only the impact times, is shown to give promising results. A second field of investigation concerns the human behavior in the same impact juggling task. We study how a variation of the tempo induces a transition between two distinct control strategies with different sensory feedback requirements. Analogies and differences between the robotic and human behaviors are obviously of high relevance in such a flexible setup. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.