34 resultados para Richardson, Dale
Resumo:
We report the amplification of 10-100-pJ semiconductor diode pulses to an energy of 158 microJ and peak powers >100 kW in a multistage fiber amplifier chain based on a single-mode, large-mode-area erbium-doped amplifier design. To our knowledge these results represent the highest single-mode pulse energy extracted from any doped-fiber system.
Resumo:
We report the amplification of 10-100-pJ semiconductor diode pulses to an energy of 158 μJ and peak powers >100 kW in a multistage fiber amplifier chain based on a single-mode, large-mode-area erbium-doped amplifier design. To our knowledge these results represent the highest single-mode pulse energy extracted from any doped-fiber system. © 1997 Optical Society of America.
Resumo:
The application of automated design optimization to real-world, complex geometry problems is a significant challenge - especially if the topology is not known a priori like in turbine internal cooling. The long term goal of our work is to focus on an end-to-end integration of the whole CFD Process, from solid model through meshing, solving and post-processing to enable this type of design optimization to become viable & practical. In recent papers we have reported the integration of a Level Set based geometry kernel with an octree-based cut- Cartesian mesh generator, RANS flow solver, post-processing & geometry editing all within a single piece of software - and all implemented in parallel with commodity PC clusters as the target. The cut-cells which characterize the approach are eliminated by exporting a body-conformal mesh guided by the underpinning Level Set. This paper extends this work still further with a simple scoping study showing how the basic functionality can be scripted & automated and then used as the basis for automated optimization of a generic gas turbine cooling geometry. Copyright © 2008 by W.N.Dawes.
Resumo:
Accurate simulation of rolling-tyre vibrations, and the associated noise, requires knowledge of road-surface topology. Full scans of the surface types in common use are, however, not widely available, and are likely to remain so. Ways of producing simulated surfaces from incomplete starting information are thus needed. In this paper, a simulation methodology based solely on line measurements is developed, and validated against a full two-dimensional height map of a real asphalt surface. First the tribological characteristics-asperity height, curvature and nearest-neighbour distributions-of the real surface are analysed. It is then shown that a standard simulation technique, which matches the (isotropic) spectrum and the probability distribution of the height measurements, is unable to reproduce these characteristics satisfactorily. A modification, whereby the inherent granularity of the surface is enforced at the initialisation stage, is introduced, and found to produce simulations whose tribological characteristics are in excellent agreement with the measurements. This method will thus make high-fidelity tyre-vibration calculations feasible for researchers with access to line-scan data only. In addition, the approach to surface tribological characterisation set out here provides a template for efficient cataloguing of road textures, as long as the resulting information can subsequently be used to produce sample realisations. A third simulation algorithm, which successfully addresses this requirement, is therefore also presented. © 2011 Elsevier B.V.