27 resultados para Reference wavelengths


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300-1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enhance the electrically driven emission in a device via Purcell effect. A narrow (Δλ=0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strongly enhanced light emission at wavelengths between 1.3 and 1.6 μm is reported at room temperature in silicon photonic crystal (PhC) nanocavities with optimized out-coupling efficiency. Sharp peaks corresponding to the resonant modes of PhC nanocavities dominate the broad sub-bandgap emission from optically active defects in the crystalline Si membrane. We measure a 300-fold enhancement of the emission from the PhC nanocavity due to a combination of far-field enhancement and the Purcell effect. The cavity enhanced emission has a very weak temperature dependence, namely less than a factor of 2 reduction between 10 K and room temperature, which makes this approach suitable for the realization of efficient light sources as well as providing a quick and easy tool for the broadband optical characterization of silicon-on-insulator nanostructures. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2011 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip compact and high efficiency Schottky detector for telecom wavelengths based on silicon metal waveguide. Detection is based on the internal photoemission process. Theory and experimental results are discussed. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vector control provides stability and performance when applied to the brushless doubly-fed machine, however cross-coupling effects can arise between inputs and outputs. To address these effects, a procedure is proposed to both visualize and minimize the cross-coupling by means of steady-state mapping and a re-alignment of the dq reference frame. With this method implemented, gain-response tests show improved decoupling across the operating region. © 2013 EUCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 Optical Society of America.