19 resultados para Rantzau, Henrik, 1526-1598.
Resumo:
The use of a porous coating on prosthetic components to encourage bone ingrowth is an important way of improving uncemented implant fixation. Enhanced fixation may be achieved by the use of porous magneto-active layers on the surface of prosthetic implants, which would deform elastically on application of a magnetic field, generating internal stresses within the in-growing bone. This approach requires a ferromagnetic material able to support osteoblast attachment, proliferation, differentiation, and mineralization. In this study, the human osteoblast responses to ferromagnetic 444 stainless steel networks were considered alongside those to nonmagnetic 316L (medical grade) stainless steel networks. While both networks had similar porosities, 444 networks were made from coarser fibers, resulting in larger inter-fiber spaces. The networks were analyzed for cell morphology, distribution, proliferation, and differentiation, extracellular matrix production and the formation of mineralized nodules. Cell culture was performed in both the presence of osteogenic supplements, to encourage cell differentiation, and in their absence. It was found that fiber size affected osteoblast morphology, cytoskeleton organization and proliferation at the early stages of culture. The larger inter-fiber spaces in the 444 networks resulted in better spatial distribution of the extracellular matrix. The addition of osteogenic supplements enhanced cell differentiation and reduced cell proliferation thereby preventing the differences in proliferation observed in the absence of osteogenic supplements. The results demonstrated that 444 networks elicited favorable responses from human osteoblasts, and thus show potential for use as magnetically active porous coatings for advanced bone implant applications. © 2012 Wiley Periodicals, Inc.
Resumo:
This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.
Resumo:
The integration and application of a new multi-objective tabu search optimization algorithm for Fluid Structure Interaction (FSI) problems are presented. The aim is to enhance the computational design process for real world applications and to achieve higher performance of the whole system for the four considered objectives. The described system combines the optimizer with a well established FSI solver which is based on the fully implicit, monolithic formuFlation of the problem in the Arbitrary Lagrangian-Eulerian FEM approach. The proposed solver resolves the proposed uid-structure interaction benchmark which describes the self-induced elastic deformation of a beam attached to a cylinder in laminar channel ow. The optimized ow characteristics of the aforementioned geometrical arrangement illustrate the performance of the system in two dimensions. Special emphasis is given to the analysis of the simulation package, which is of high accuracy and is the core of application. The design process identifies the best combination of ow features for optimal system behavior and the most important objectives. In addition, the presented methodology has the potential to run in parallel, which will significantly speed-up the elapsed time. Finite Element Method (FEM), Fluid-Structure Interaction (FSI), Multi-Ojective Tabu search (MOTS2). Copyright © 2013 Tech Science Press.
Resumo:
Optical technologies have received large interest in recent years for use in board-level interconnects. Polymer multimode waveguides in particular, constitute a promising technology for high-capacity optical backplanes as they can be cost-effectively integrated onto conventional printed circuit boards (PCBs). This paper presents the first optical backplane demonstrator based on the use of PCB-integrated polymer multimode waveguides and a regenerative shared bus architecture. The backplane demonstrator is formed with commercially-available low-cost electronic and photonic components onto conventional FR4 substrates and comprises two opto-electronic (OE) bus modules interconnected via a prototype regenerator unit. The system enables interconnection between the connected cards over four optical channels, each operating at 10 Gb/s. Bus extension is achieved by cascading OE bus modules via 3R regenerator units, overcoming therefore the inherent limitation of optical bus topologies in the maximum number of cards that can be connected to the bus. Details of the design, fabrication, and assembly of the different parts of this optical bus backplane are presented and related optical and data transmission characterisation studies are reported. The optical layer of the OE bus modules comprises a four-channel three-card waveguide layout that is compatible with VCSEL/PD arrays and ribbon fibres. All on-board optical paths exhibit insertion losses below 13 dB and intra-channel crosstalk lower than -29 dB. The robustness of the signal distribution from the bus inputs to all respective bus output ports in the presence of input misalignment is demonstrated, while 1 dB input alignment tolerances of approximately ±10 μm are obtained. The electrical layer of the OE bus modules comprises the essential driving circuitry for 1×4 VCSEL and PD arrays and the corresponding control and power regulation circuits. The interface between the optical and electrical layers of the bus modules is achieved with simple OE connectors that enable end-fired optical coupling into and out of the on-board polymer waveguides. The backplane demonstrator achieves error-free (BER < 10-12) 10 Gb/s data transmission over each optical channel, enabling therefore, an aggregate interconnection capacity of 40 Gb/s between any connected cards. © 1983-2012 IEEE.