18 resultados para Radar in navigation
Resumo:
Historically, waste pickers around the globe have utilised urban solid waste as a principal source of livelihood. Formal waste management sectors usually perceive the informal waste collection/recycling networks as backward, unhygienic and generally incompatible with modern waste management systems. It is proposed here that through careful planning and administration, these seemingly troublesome informal networks can be integrated into formal waste management systems in developing countries, providing mutual benefits. A theoretical framework for integration based on a case study in Lahore, Pakistan, is presented. The proposed solution suggests that the municipal authority should draw up and agree on a formal work contract with the group of waste pickers already operating in the area. The proposed system is assessed using the integration radar framework to classify and analyse possible intervention points between the sectors. The integration of the informal waste workers with the formal waste management sector is not a one dimensional or single step process. An ideal solution might aim for a balanced focus on all four categories of intervention, although this may be influenced by local conditions. Not all the positive benefits will be immediately apparent, but it is expected that as the acceptance of such projects increases over time, the informal recycling economy will financially supplement the formal system in many ways. © The Author(s) 2013.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Experimental research in biology has uncovered a number of different ways in which flying insects use cues derived from optical flow for navigational purposes, such as safe landing, obstacle avoidance and dead reckoning. In this study, we use a synthetic methodology to gain additional insights into the navigation behavior of bees. Specifically, we focus on the mechanisms of course stabilization behavior and visually mediated odometer by using a biological model of motion detector for the purpose of long-range goal-directed navigation in 3D environment. The performance tests of the proposed navigation method are conducted by using a blimp-type flying robot platform in uncontrolled indoor environments. The result shows that the proposed mechanism can be used for goal-directed navigation. Further analysis is also conducted in order to enhance the navigation performance of autonomous aerial vehicles. © 2003 Elsevier B.V. All rights reserved.