23 resultados para Quantity of water
Resumo:
Centrifuge tests were carried out to determine the effect of 5 different water-soluble chemicals on a thin consolidated disc of clay. The evolution of changes in the clay permeability with time was investigated and other structural changes due to chemical attack were monitored. The findings presented here demonstrate that the permeability of the clay appear to be generally related to the polarity of the chemicals and the dielectric constant, with the exception of Butanol. In the case of Butanol at low flow rate and low stress level, the action of the chemical caused the clay to crack, with a consequent large increase in flow.
Resumo:
In the current study, the effects of polar solvents on tissue volume and mechanical properties are considered. Area shrinkage measurements are conducted for mineralized bone tissue samples soaked in polar solvents. Area shrinkage is used to calculate approximate linear and volume shrinkage. Results are compared with viscoelastic mechanical parameters for bone in the same solvents (as measured previously) and with both shrinkage measurements and mechanical data for nonmineralized tissues, as taken from the existing literature. As expected, the shrinkage of mineralized tissues is minimal when compared with shrinkage of nonmineralized tissues immersed in the same polar solvents. The mechanical changes in bone are also substantially less than in nonmineralized tissues. The largest stiffness values are found in shrunken bone samples (immersed in acetone and ethanol). The mineral phase in bone thus resists tissue shrinkage that would otherwise occur in the pure soft tissue phase. © 2007 Materials Research Society.
Resumo:
Water service providers (WSPs) in the UK have statutory obligations to supply drinking water to all customers that complies with increasingly stringent water quality regulations and minimum flow and pressure criteria. At the same time, the industry is required by regulators and investors to demonstrate increasing operational efficiency and to meet a wide range of performance criteria that are expected to improve year-on-year. Most WSPs have an ideal for improving the operation of their water supply systems based on increased knowledge and understanding of their assets and a shift to proactive management followed by steadily increasing degrees of system monitoring, automation and optimisation. The fundamental mission is, however, to ensure security of supply, with no interruptions and water quality of the highest standard at the tap. Unfortunately, advanced technologies required to fully understand, manage and automate water supply system operation either do not yet exist, are only partially evolved, or have not yet been reliably proven for live water distribution systems. It is this deficiency that the project NEPTUNE seeks to address by carrying out research into 3 main areas; these are: data and knowledge management; pressure management (including energy management); and the associated complex decision support systems on which to base interventions. The 3-year project started in April of 2007 and has already resulted in a number of research findings under the three main research priority areas (RPA). The paper summarises in greater detail the overall project objectives, the RPA activities and the areas of research innovation that are being undertaken in this major, UK collaborative study. Copyright 2009 ASCE.
Resumo:
Water supply and wastewater control are critical elements of society's infrastructure. The objective of this study will be to provide a generic risk assessment tool to provide municipalities and the nation as a whole with a quantifiable assessment of their vulnerability to water infrastructure threats. The approach will prioritize countermeasures and identify where research and development is required to further minimize risk. This paper outlines the current context, primary concerns and state-of-the art in critical infrastructure risk management for the water sector and proposes a novel approach to resolve existing questions in the field. The proposed approach is based on a modular framework that derives a quantitative risk index for varied domains of interest. The approach methodology is scaleable and based on formal definitions of event probability and severity. The framework is equally applicable to natural and human-induced hazard types and can be used for analysis of compound risk events.
Resumo:
Water front structures have suffered significant damage in many of the recent earthquakes. These include gravity type quay walls, vertically composite walls, cantilever retaining walls, anchored bulkheads and similar structures. One of the primary causes for the poor performance of these classes of structures is the liquefaction of the foundation soil and in some instances liquefaction of the backfill soil. The liquefaction of the soil in-front of the quay wall tends to cause large lateral displacements and rotation of the wall. Often such gravity walls are placed on rubble mound deposited onto the sea bed.This paper presents finite element analyses of such a problem in which strength degradation of the foundation soil and the backfill material will be modelled using PZ mark III constitutive model. The performance of the wall in terms of its lateral displacement, vertical settlement and/or the rotation suffered by the wall will be presented. In addition, the contours of the horizontal and vertical effective stresses and the excess pore pressure ratio will be presented at different time instants together with hyrdraulic gradients. Immediately after the earthquake, the hydraulic gradients indicate migration of pore water into the region below the wall, suggesting further softening of the foundation soil below the wall.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for solid, liquid and cluster forms of water. We use a many-body separation of the total energy into its 1-body, 2-body (2B) and beyond-2-body (B2B) components to analyze the deficiencies of two popular DFT approximations. We show how machine-learning methods make this analysis possible for ice structures as well as for water clusters. We find that the crucial energy balance between compact and extended geometries can be distorted by 2B and B2B errors, and that both types of first-principles error are important.
Resumo:
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.