28 resultados para Prove


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic Liquid Crystals (LCs) in microsystems. Since LC's do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC's. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC's, such as high bandwidths and high changes in flow resistance. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The desire to seek new and unfamiliar experiences is a fundamental behavioral tendency in humans and other species. In economic decision making, novelty seeking is often rational, insofar as uncertain options may prove valuable and advantageous in the long run. Here, we show that, even when the degree of perceptual familiarity of an option is unrelated to choice outcome, novelty nevertheless drives choice behavior. Using functional magnetic resonance imaging (fMRI), we show that this behavior is specifically associated with striatal activity, in a manner consistent with computational accounts of decision making under uncertainty. Furthermore, this activity predicts interindividual differences in susceptibility to novelty. These data indicate that the brain uses perceptual novelty to approximate choice uncertainty in decision making, which in certain contexts gives rise to a newly identified and quantifiable source of human irrationality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the discrete-time dynamics of a network of agents that exchange information according to a nearest-neighbour protocol under which all agents are guaranteed to reach consensus asymptotically. We present a fully decentralised algorithm that allows any agent to compute the final consensus value of the whole network in finite time using the minimum number of successive values of its own state history. We show that the minimum number of steps is related to a Jordan block decomposition of the network dynamics, and present an algorithm to compute the final consensus value in the minimum number of steps by checking a rank condition of a Hankel matrix of local observations. Furthermore, we prove that the minimum number of steps is related to graph theoretical notions that can be directly computed from the Laplacian matrix of the graph and from the minimum external equitable partition. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper proposes a synchronization mechanism in a set of nonlinear oscillators interconnected through a communication network. In contrast to many existing results, we do not employ strong, diffusive couplings between the individual oscillators. Instead, each individual oscillator is weakly forced by a linear resonator system. The resonator systems are synchronized using results from consensus theory. The synchronized resonator systems force the frequencies of the nonlinear oscillators to a constant frequency and thereby yield synchronization of the oscillators. We prove this result using the theory of small forcings of stable oscillators. This synchronization scheme allows for synchronization of nonlinear oscillators over uniformly connected communication graphs. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level. © 2007 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses dissipativity theory to provide the system-theoretic description of a basic oscillation mechanism. Elementary input-output tools are then used to prove the existence and stability of limit cycles in these "oscillators". The main benefit of the proposed approach is that it is well suited for the analysis and design of interconnections, thus providing a valuable mathematical tool for the study of networks of coupled oscillators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the structural behaviour and the integrity of parallel plate-type nuclear fuel assemblies. A plate-type assembly consists of several thin plates mounted in a box-like structure and is subjected to a coolant flow that can result in a considerable drag force. A finite element model of an assembly is presented to study the sensitivity of the natural frequencies to the stiffness of the plates' junctions. It is shown that the shift in the natural frequencies of the torsional modes can be used to check the global integrity of the fuel assembly while the local natural frequencies of the inner plates can be used to estimate the maximum drag force they can resist. Finally a non-destructive method is developed to assess the resistance of the inner plates to bear an applied load. Extensive computational and experimental results are presented to prove the applicability of the method presented. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 C to 145 C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. The Authors. © 2013 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove theoretically and experimentally the concept of polarization holography by producing visible diffraction through radiation emitted by plasmonic nanoantennas. We show a methodology to selectively activate the nanoantenna emission by controlling the orientation of the electric field of a beam. Additionally, we demonstrate that it is possible to superpose two independent transverse nanoantennas in the same plane without producing interference in their radiated field. Hence, we introduce an alternative view to the traditional concept of holography where fringes (or diffractive units) are band-limited to half the wavelength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of a class of combustion systems, suceptible to damage from self-excited combustion oscillations, is considered. An adaptive stable controller, called Self-Tuning Regulator (STR), has recently been developed, which meets the apparently contradictory challenge of relying as little as possible on a particular combustion model while providing some guarantee that the controller will cause no harm. The controller injects some fuel unsteadily into the burning region, thereby altering the heat release, in response to an input signal detecting the oscillation. This paper focuses on an extension of the STR design, when, due to stringent emission requirements and to the danger of flame extension, the amount of fuel used for control is limited in amplitude. A Lyapunov stability analysis is used to prove the stability of the modified STR when the saturation constraint is imposed. The practical implementation of the modified STR remains straightforward, and simulation results, based on the nonlinear premixed flame model developed by Dowling, show that in the presence of a saturation constraint, the self-excited oscillations are damped more rapidly with the modified STR than with the original STR. © 2001 by S. Evesque. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need for a stronger theoretical understanding of Multidisciplinary Design Optimization (MDO) within the field. Having developed a differential geometry framework in response to this need, we consider how standard optimization algorithms can be modeled using systems of ordinary differential equations (ODEs) while also reviewing optimization algorithms which have been derived from ODE solution methods. We then use some of the framework's tools to show how our resultant systems of ODEs can be analyzed and their behaviour quantitatively evaluated. In doing so, we demonstrate the power and scope of our differential geometry framework, we provide new tools for analyzing MDO systems and their behaviour, and we suggest hitherto neglected optimization methods which may prove particularly useful within the MDO context. Copyright © 2013 by ASME.