34 resultados para Proton Conductivity
Resumo:
We demonstrated a controllable tuning of the electronic characteristics of ZnO nanowire field effect transistors (FETs) using a high-energy proton beam. After a short proton irradiation time, the threshold voltage shifted to the negative gate bias direction with an increase in the electrical conductance, whereas the threshold voltage shifted to the positive gate bias direction with a decrease in the electrical conductance after a long proton irradiation time. The electrical characteristics of two different types of ZnO nanowires FET device structures in which the ZnO nanowires are placed on the substrate or suspended above the substrate and photoluminescence (PL) studies of the ZnO nanowires provide substantial evidence that the experimental observations result from the irradiation-induced charges in the bulk SiO(2) and at the SiO(2)/ZnO nanowire interface, which can be explained by a surface-band-bending model in terms of gate electric field modulation. Our study on the proton-irradiation-mediated functionalization can be potentially interesting not only for understanding the proton irradiation effects on nanoscale devices, but also for creating the property-tailored nanoscale devices.
Resumo:
We investigated the UV photoconductivity characteristics of ZnO nanowire field effect transistors (FETs) irradiated by proton beams. After proton beam irradiation (using a beam energy of 10 MeV and a fluence of 10 12 cm -2), the drain current and carrier density in the ZnO nanowire FETs decreased, and the threshold voltage shifted to the positive gate bias direction due to the creation of interface traps at the SiO 2/ZnO nanowire interface by the proton beam. The interface traps produced a higher surface barrier potential and a larger depletion region at the ZnO nanowire surface, affecting the photoconductivity and its decay time. The UV photoconductivity of the proton-irradiated ZnO nanowire FETs was higher and more prolonged than that of the pristine ZnO nanowire FETs. The results extend our understanding of the UV photoconductivity characteristics of ZnO nanowire devices and other materials when irradiated with highly energetic particles. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The conversion of silver nanoparticle (NP) paste films into highly conductive films at low sintering temperature is an important requirement for the developing areas of additive fabrication and printed electronics. Ag NPs with a diameter of ∼10 nm were prepared via an improved chemical process to produce viscous paste with a high wt%. The paste consisted of as-prepared Ag NP and an organic vehicle of ethylcellulose that was deposited on glass and Si substrates using a contact lithographic technique. The morphology and conductivity of the imprinted paste film were measured as a function of sintering temperature, sintering time and the percentage ratio of Ag NP and ethylcellulose. The morphology and conductivity were examined using scanning electron microscopy (SEM) and a two-point probe electrical conductivity measurement. The results show that the imprinted films were efficiently converted into conducting states when exposed to sintering temperature in the range of 200-240 °C, this temperature is lower than the previously reported values for Ag paste. © 2010 Elsevier B.V. All rights reserved.