27 resultados para Project 2004-028-C : Wayfinding in the Built Environment
Resumo:
Construction industry is a sector that is renowned for the slow uptake of new technologies. This is usually due to the conservative nature of this sector that relies heavily on tried and tested and successful old business practices. However, there is an eagerness in this industry to adopt Building Information Modelling (BIM) technologies to capture and record accurate information about a building project. But vast amounts of information and knowledge about the construction process is typically hidden within informal social interactions that take place in the work environment. In this paper we present a vision where smartphones and tablet devices carried by construction workers are used to capture the interaction and communication between workers in the field. Informal chats about decisions taken in the field, impromptu formation of teams, identification of key persons for certain tasks, and tracking the flow of information across the project community, are some pieces of information that could be captured by employing social sensing in the field. This information can not only be used during the construction to improve the site processes but it can also be exploited by the end user during maintenance of the building. We highlight the challenges that need to be overcome for this mobile and social sensing system to become a reality. © 2012 ACM.
Resumo:
This paper proposes a movement trajectory planning model, which is a maximum task achievement model in which signal-dependent noise is added to the movement command. In the proposed model, two optimization criteria are combined, maximum task achievement and minimum energy consumption. The proposed model has the feature that the end-point boundary conditions for position, velocity, and acceleration need not be prespecified. Consequently, the method can be applied not only to the simple point-to-point movement, but to any task. In the method in this paper, the hand trajectory is derived by a psychophysical experiment and a numerical experiment for the case in which the target is not stationary, but is a moving region. It is shown that the trajectory predicted from the minimum jerk model or the minimum torque change model differs considerably from the results of the psychophysical experiment. But the trajectory predicted from the maximum task achievement model shows good qualitative agreement with the hand trajectory obtained from the psychophysical experiment. © 2004 Wiley Periodicals, Inc.
Resumo:
This paper presents the findings of a comparative analysis of documents addressing sustainable development in relation to the built environment. The analysis has identified commonality in interpretations of sustainability for the built environment and enabled the collation of a set of principles or guidelines that represent current thinking on how the objectives of sustainable development could be interpreted for the built environment.
Resumo:
Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.