152 resultados para Product Design
Resumo:
Metal production consumes around 10% of all global energy, so is a significant driver of climate change and other concerns about sustainability. Demand for metal is rising and forecast to double by 2050 through a combination of growing total demand from developing countries, and ongoing replacement demand in developed economies. Metal production is already extremely efficient, so the major opportunities for emissions abatement in the sector are likely to arise from material efficiency - using less new metal to meet demand for services. Therefore this paper examines the opportunity to reduce requirements for steel and aluminium by lightweight design. A set of general principles for lightweight design are proposed by way of a simple analytical example, and are then applied to five case study products which cumulatively account for 30% of global steel product output. It is shown that exploiting lightweight design opportunities for these five products alone could reduce global steel requirements by 5%, and similar savings in aluminium products could reduce global aluminium requirements by 7%. If similar savings to those in the design case studies were possible in all steel and aluminium products, total material requirements could be reduced by 25-30%. However, many of these light-weighting measures are, at present, economically unattractive, and may take many years to implement. © 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper explores the concept of partnerships between buyers and suppliers in the global automotive sector during product design and development. Partnerships are often the goal in a shift away from adversarial arms-length relationships. The objective of this research is to provide empirical evidence to explain the levels of mutual investment expected and achieved in partnerships from both buyer and supplier perspectives. During this research, 25 employees from 12 global supplier organisations who were in partnership with a specific vehicle manufacturer (VM) were interviewed. Twelve employees from this VM were also interviewed. The research showed the differences between partnerships and non-partnerships and the disparities in the expectations of investment from each partner. For suppliers and buyers to get the most out of partnerships, clear expectations and investments needed over time should be understood and agreed early in the relationship. © 2009 Elsevier B.V.All rights reserved.
Resumo:
Since ubiquitous technology was introduced in the early 1980s, it has rapidly developed, and been applied to various domains mainly for the improvement of human life. In this article, the authors propose that ubiquitous computing technology can be effectively used for the design and manufacturing of a product by proposing a new paradigm, called UbiDM (Design and Manufacture via Ubiquitous Computing Technology). The key aspect of UbiDM is the utilisation of the entire product lifecycle information obtained via ubiquitous computing technology for the design and manufacture of the product. The new paradigm can solve many of the problems that have not been properly handled by previous manufacturing paradigms. Specifically, it will address the concept of UbiDM by the following aspects: (1) why there is a need for UbiDM; (2) the essence of UbiDM; (3) enabling technologies; (4) application area; (5) worldwide RD status; and (6) the societal impacts of UbiDM.
Resumo:
This report presents work from the first nine month of a project investigating design methodologies and selection tools to promote innovations in sports equipment. Particular consideration is given to product design improvements and new market adoption of advanced materials and processes. Our aim is to couple appropriately similar technologies so as to provide a method of transfer between sports equipment designs. We would like to make barriers between isolated sports equipment markets more transparent without releasing proprietary information. A brief history of sports equipment design is included; issues particularly relevant to material and process technologies are outlined for sports equipment. A start has been made on a software program to express most of this information in a concise and accessible format. The methodology is reviewed with some industrial case studies. There is a need for further research to extend and address the design issues raised in this document; a suggested research programme is attached.