17 resultados para Principle of individuation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbourhood structure of the data in a sense that objects in the same semantic concept have similar latent values, and objects in different concepts have dissimilar latent values. We formulate the supervised infinite latent variable problem based on an intuitive principle of pulling objects together if they are of the same type, and pushing them apart if they are not. We then combine this principle with a flexible Indian Buffet Process prior on the latent variables. We show that the inferred supervised latent variables can be directly used to perform a nearest neighbour search for the purpose of retrieval. We introduce a new application of dynamically extending hash codes, and show how to effectively couple the structure of the hash codes with continuously growing structure of the neighbourhood preserving infinite latent feature space.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Legged locomotion of biological systems can be viewed as a self-organizing process of highly complex system-environment interactions. Walking behavior is, for example, generated from the interactions between many mechanical components (e.g., physical interactions between feet and ground, skeletons and muscle-tendon systems), and distributed informational processes (e.g., sensory information processing, sensory-motor control in central nervous system, and reflexes) [21]. An interesting aspect of legged locomotion study lies in the fact that there are multiple levels of self-organization processes (at the levels of mechanical dynamics, sensory-motor control, and learning). Previously, the self-organization of mechanical dynamics was nicely demonstrated by the so-called Passive Dynamic Walkers (PDWs; [18]). The PDW is a purely mechanical structure consisting of body, thigh, and shank limbs that are connected by passive joints. When placed on a shallow slope, it exhibits natural bipedal walking dynamics by converting potential to kinetic energy without any actuation. An important contribution of these case studies is that, if designed properly, mechanical dynamics can generate a relatively complex locomotion dynamics, on the one hand, and the mechanical dynamics induces self-stability against small disturbances without any explicit control of motors, on the other. The basic principle of the mechanical self-stability appears to be fairly general that there are several different physics models that exhibit similar characteristics in different kinds of behaviors (e.g., hopping, running, and swimming; [2, 4, 9, 16, 19]), and a number of robotic platforms have been developed based on them [1, 8, 13, 22]. © 2009 Springer London.