30 resultados para Pot - Bearings
Resumo:
The potential use of YBa2j as an active component in a magnetic bearing is being investigated. Although the load bearing capacity is high and increases with the square of the magnetic field trapped, the stiffness is low. Both the stiffness and the lévitation height are a function of the loading history of the bearing. At Cambridge we have been investigating the effects of dynamic loading such as single large excursions from steady state loads and cyclically applied loads such as vibrations. Since a superconducting bearing has little inherent damping cyclic loads applied at or near its natural frequency can have catastrophic effects. The information being gathered at Cambridge will be used to enable these effects to be mitigated in the bearing design process. © 1997 IEEE.
Resumo:
Axial and journal bearings have been investigated for use in superconducting flywheel systems. Our test rig comprises of an Evershed type magnetic bearing used to levitate a 35 kg rotor. The stabilizing forces are provided by superconducting axial and journal bearings. In this study we focus on the vertical stiffness measurements and explore the use of journal bearings. The journal bearing consists of radial magnets with alternating polarities. Our results indicate that this type of journal bearing can effectively stabilize the rotor. Spin-down test shows a linear behavior.
Resumo:
Superconducting journal bearings have been investigated for use in flywheel systems. We report on the zero-field cooled and field-cooled stiffness of these bearings. They are made up of radial magnet rings with alternating polarities, a pole pitch of 11 mm and a surface field of 0.1 T. Field-cooled stiffness of the journal bearings increased four times over the zero-field-cooled stiffness. © 2005 IEEE.
Resumo:
This paper presents research into superconducting Micro-Bearings for MEMS systems. Advanced silicon processing techniques developed for the Very Large Scale Integration (VLSI) industry have been exploited in recent years to enable the production of micro-engineered moving mechanical systems. These devices commonly known as Micro-ElectroMechanical Systems (MEMS) have many potential advantages. In many respects the effect of scaling a machine from macro-sized to micro-sized are either neutral or beneficial. However in one important respect the scaling produces a severely detrimental effect. That respect is in the tribology and the subsequent wear on the high speed rotating machines. This leads to very short device lifetimes. This paper presents results obtained from a MEMS motor supported on superconducting bearings. The bearings are self-positioning, relying on, the Meissner effect to provide a levitation force which moves the rotor into position and flux pinning to provide stability thereafter. The rotor is driven by a simple electrostatic type motor in which photo resist is used to pattern the motor poles directly onto the rotor. © 2005 IEEE.
Resumo:
Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding. © 2011 Published under licence by IOP Publishing Ltd.
Resumo:
In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.
Resumo:
We are investigating the use of flywheels for energy storage. Flywheel devices need to be of high efficiency and an important source of losses is the bearings. In addition, the requirement is for the devices to have long lifetimes with minimal or no maintenance. Conventional rolling element bearings can and have been used, but a non-contact bearing, such as a superconducting magnetic bearing, is expected to have a longer lifetime and lower losses. At Cambridge we have constructed a flywheel system. Designed to run in vacuum this incorporates a 40kg flywheel supported on superconducting magnetic bearings. The production device will be a 5kW device storing 5 kWh of retrievable energy at 50,000 rpm. The Cambridge system is being developed in parallel with a similar device supported on a conventional bearing. This will allow direct performance comparisons. Although superconducting bearings are increasingly well understood, of major importance are the cryogenics and special attention is being paid to methods of packaging and insulating the superconductors to cut down radiation losses. The work reported here is part of a three-year program of work supported by the EPSRC. © 1999 IEEE.
Resumo:
A popular method used to reduce vibration transmitted from underground railways into nearby buildings is floating-slab track, whereby a concrete slab supporting the two rails is mounted on rubber bearings or steel springs to isolate it from the tunnel invert. This paper adds a track model to a previously developed three-dimensional tunnel model in order to assess the effectiveness of floating-slab track. A slab beam coupled to the tunnel in the wavenumber domain, with the slab bearings represented by an elastic layer, is examined first. A second beam representing the two rails together is then coupled to the slab, and axle masses representing a train are added to the rail beam. Power-spectral densities and RMS levels of soil vibration due to random roughness-displacement excitation between the masses and the rail beam are calculated. Analytical techniques are used to minimise the computational requirements of the model. The results demonstrate the inadequacy of simple mass-spring and Winkler-beam models with rigid foundations for the assessment of the vibration-isolation performance of railway track. They suggest that the achievable insertion loss is modest and that floating the track slab may in fact cause increased transmission of vibration under certain conditions. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
In a wind-turbine gearbox, planet bearings exhibit a high failure rate and are considered as one of the most critical components. Development of efficient vibration based fault detection methods for these bearings requires a thorough understanding of their vibration signature. Much work has been done to study the vibration properties of healthy planetary gear sets and to identify fault frequencies in fixed-axis bearings. However, vibration characteristics of planetary gear sets containing localized planet bearing defects (spalls or pits) have not been studied so far. In this paper, we propose a novel analytical model of a planetary gear set with ring gear flexibility and localized bearing defects as two key features. The model is used to simulate the vibration response of a planetary system in the presence of a defective planet bearing with faults on inner or outer raceway. The characteristic fault signature of a planetary bearing defect is determined and sources of modulation sidebands are identified. The findings from this work will be useful to improve existing sensor placement strategies and to develop more sophisticated fault detection algorithms. Copyright © 2011 by ASME.
Resumo:
Planet bearings of wind turbine epicyclic gearboxes are considered as one of the most critical components due to their high failure rate. In order to develop effective vibration based detection algorithms for these bearings, a thorough understanding of their vibration signature is required. In this paper, we investigate the vibration behaviour of an epicyclic gearbox in the presence of a defective planet bearing both theoretically and experimentally. We also identify different sources of modulation sidebands using an analytical model which includes ring gear flexibility and planet bearing defects. The findings from this work will help engineers to develop more effective fault detection algorithms.
Resumo:
Dynamism and uncertainty are real challenges for present day manufacturing enterprises (MEs). Reasons include: an increasing demand for customisation, reduced time to market, shortened product life cycles and globalisation. MEs can reduce competitive pressure by becoming reconfigurable and change-capable. However, modern manufacturing philosophies, including agile and lean, must complement the application of reconfigurable manufacturing paradigms. Choosing and applying the best philosophies and techniques is very difficult as most MEs deploy complex and unique configurations of processes and resource systems, and seek economies of scope and scale in respect of changing and distinctive product flows. It follows that systematic methods of achieving model driven reconfiguration and interoperation of component based manufacturing systems are required to design, engineer and change future MEs. This thesis, titled Enhanced Integrated Modelling Approach to Reconfiguring Manufacturing Enterprises , introduces the development and prototyping a model-driven environment for the design, engineering, optimisation and control of the reconfiguration of MEs with an embedded capability to handle various types of change. The thesis describes a novel systematic approach, namely enhanced integrated modelling approach (EIMA), in which coherent sets of integrated models are created that facilitates the engineering of MEs especially their production planning and control (PPC) systems. The developed environment supports the engineering of common types of strategic, tactical and operational processes found in many MEs. The EIMA is centred on the ISO standardised CIMOSA process modelling approach. Early study led to the development of simulation models during which various CIMOSA shortcomings were observed, especially in its support for aspects of ME dynamism. A need was raised to structure and create semantically enriched models hence forming an enhanced integrated modelling environment. The thesis also presents three industrial case examples: (1) Ford Motor Company; (2) Bradgate Furniture Manufacturing Company; and (3) ACM Bearings Company. In order to understand the system prior to realisation of any PPC strategy, multiple process segments of any target organisation need to be modelled. Coherent multi-perspective case study models are presented that have facilitated process reengineering and associated resource system configuration. Such models have a capability to enable PPC decision making processes in support of the reconfiguration of MEs. During these case studies, capabilities of a number of software tools were exploited such as Arena®, Simul8®, Plant Simulation®, MS Visio®, and MS Excel®. Case study results demonstrated effectiveness of the concepts related to the EIMA. The research has resulted in new contributions to knowledge in terms of new understandings, concepts and methods in following ways: (1) a structured model driven integrated approach to the design, optimisation and control of future reconfiguration of MEs. The EIMA is an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of an ME; and (2) example application cases showing benefits in terms of reduction in lead time, cost and resource load and in terms of improved responsiveness of processes and resource systems with a special focus on PPC; (3) identification and industrial application of a new key performance indicator (KPI) known as P3C the measuring and monitoring of which can aid in enhancing reconfigurability and responsiveness of MEs; and (4) an enriched modelling concept framework (E-MUNE) to capture requirements of static and dynamic aspects of MEs where the conceptual framework has the capability to be extended and modified according to the requirements. The thesis outlines key areas outlining a need for future research into integrated modelling approaches, interoperation and updating mechanisms of partial models in support of the reconfiguration of MEs.
Resumo:
There has recently been considerable research published on the applicability of monitoring systems for improving civil infrastructure management decisions. Less research has been published on the challenges in interpreting the collected data to provide useful information for engineering decision makers. This paper describes some installed monitoring systems on the Hammersmith Flyover, a major bridge located in central London (United Kingdom). The original goals of the deployments were to evaluate the performance of systems for monitoring prestressing tendon wire breaks and to assess the performance of the bearings supporting the bridge piers because visual inspections had indicated evidence of deterioration in both. This paper aims to show that value can be derived from detailed analysis of measurements from a number of different sensors, including acoustic emission monitors, strain, temperature and displacement gauges. Two structural monitoring systems are described, a wired system installed by a commercial contractor on behalf of the client and a research wireless deployment installed by the University of Cambridge. Careful interpretation of the displacement and temperature gauge data enabled bearings that were not functioning as designed to be identified. The acoustic emission monitoring indicated locations at which rapid deterioration was likely to be occurring; however, it was not possible to verify these results using any of the other sensors installed and hence the only method for confirming these results was by visual inspection. Recommendations for future bridge monitoring projects are made in light of the lessons learned from this monitoring case study. © 2014 This work is made available under the terms of the Creative Commons Attribution 4.0 International license,.