32 resultados para Plasticity, Multiscale analysis
Resumo:
Small scale yielding around a mode I crack is analysed using polycrystalline discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modelled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, nucleation, interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Grain boundaries are modelled as impenetrable to dislocations. The polycrystalline material is taken to consist of two types of square grains, one of which has a bcc-like orientation and the other an fcc-like orientation. For both orientations there are three active slip systems. Alternating rows, alternating columns and a checker-board-like arrangement of the grains is used to construct the polycrystalline materials. Consistent with the increasing yield strength of the polycrystalline material with decreasing grain size, the calculations predict a decrease in both the plastic zone size and the crack-tip opening displacement for a given applied mode I stress intensity factor. Furthermore, slip-band and kink-band formation is inhibited by all grain arrangements and, with decreasing grain size, the stress and strain distributions more closely resemble the HRR fields with the crack-tip opening approximately inversely proportional to the yield strength of the polycrystalline materials. The calculations predict a reduction in fracture toughness with decreasing grain size associated with the grain boundaries acting as effective barriers to dislocation motion.
Resumo:
The effect of size and slip system configuration on the tensile stress-strain response of micron-sized planar crystals as obtained from discrete dislocation plasticity simulations is presented. The crystals are oriented for either single or symmetric double slip. With the rotation of the tensile axis unconstrained, there is a strong size dependence, with the flow strength increasing with decreasing specimen size. Below a certain specimen size, the flow strength of the crystals is set by the nucleation strength of the initially present Frank-Read sources. The main features of the size dependence are the same for both the single and symmetric double slip configurations.
Resumo:
The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the computations performed on its afferent inputs. However, the spikes of such a neuron are a very low-dimensional and discrete projection of this continually evolving signal. We explored the possibility that the neuron's efferent synapses perform the critical computational step of estimating the membrane potential trajectory from the spikes. We found that short-term changes in synaptic efficacy can be interpreted as implementing an optimal estimator of this trajectory. Short-term depression arose when presynaptic spiking was sufficiently intense as to reduce the uncertainty associated with the estimate; short-term facilitation reflected structural features of the statistics of the presynaptic neuron such as up and down states. Our analysis provides a unifying account of a powerful, but puzzling, form of plasticity.
Resumo:
Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we study the question of how this "temporal stability" or "slowness" approach can be implemented within the limits of biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing-dependent plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow feature analysis and the "trace rule." The resulting learning windows are compatible with physiological data both in shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological neurons.