20 resultados para Placement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements consisting of γ-ray excitation functions and angular distributions were performed using the (n,n′γ) reaction on Ni62. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From γ-ray angular distributions, the lifetimes of levels up to ~3.8 MeV in excitation energy were extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities were compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the fp shell configuration space. Two-phonon states were found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z=28 proton core excitations played a major role in understanding the observed structure. © 2011 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data quality (DQ) assessment can be significantly enhanced with the use of the right DQ assessment methods, which provide automated solutions to assess DQ. The range of DQ assessment methods is very broad: from data profiling and semantic profiling to data matching and data validation. This paper gives an overview of current methods for DQ assessment and classifies the DQ assessment methods into an existing taxonomy of DQ problems. Specific examples of the placement of each DQ method in the taxonomy are provided and illustrate why the method is relevant to the particular taxonomy position. The gaps in the taxonomy, where no current DQ methods exist, show where new methods are required and can guide future research and DQ tool development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene is at the center of an ever growing research effort due to its unique properties, interesting for both fundamental science and applications. A key requirement for applications is the development of industrial-scale, reliable, inexpensive production processes. Here we review the state of the art of graphene preparation, production, placement and handling. Graphene is just the first of a new class of two dimensional materials, derived from layered bulk crystals. Most of the approaches used for graphene can be extended to these crystals, accelerating their journey towards applications. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are promising for microsystems applications, yet few techniques effectively enable integration of CNTs with precise control of placement and alignment of the CNTs at sufficiently high densities necessary for compelling mechanical or electrical performance. This paper explores new methods for scalable integration of dense, horizontally aligned (HA) CNTs with patterned electrodes. Our technique involves the synthesis of vertically aligned (VA) CNTs directly on a conductive underlayer and subsequent mechanical transformation into HA-CNTs, thus making electrical contact between two electrodes. We compare elasto-capillary folding and mechanical rolling as methods for transforming VA-CNTs, which lead to distinctly different HA-CNT morphologies and potentially impact material and device properties. As an example application of this novel CNT morphology, we investigate fabrication of electrically addressable CNT-C60 hybrid thin films that we previously demonstrated as photodetectors. We synthesize these assemblies by crystallizing C60 from dispersion on HA-CNT thin-film scaffoldings. HA-CNTs fabricated by rolling result in relatively low packing density, so C 60 crystals embed inside the HA-CNT matrix during synthesis. On the other hand, C60 crystallization is restricted to near the surface of HA-CNT films made by the elasto-capillary process. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the fabrication of a mechanically-flexible 16×16 array of thin-film, micron-size LEDs emitting at 480 nm. Devices were transfer-printed onto a mechanically-flexible ITO backplane using a modified, high-precision (placement accuracy ±25 nm) assembly system. © 2013 IEEE.