40 resultados para Physics -- Ecology
Resumo:
This paper presents a practical destruction-free parameter extraction methodology for a new physics-based circuit simulator buffer-layer Integrated Gate Commutated Thyristor (IGCT) model. Most key parameters needed for this model can be extracted by one simple clamped inductive-load switching experiment. To validate this extraction method, a clamped inductive load switching experiment was performed, and corresponding simulations were carried out by employing the IGCT model with parameters extracted through the presented methodology. Good agreement has been obtained between the experimental data and simulation results.
Resumo:
We present an overview of the single-transistor memory cells (lT-DRAMs), which are based on floating-body effects in SOI MOSFETs. The typical device architectures, principles of operation and key mechanisms for programming are described. The various approaches (Z-RAM, MSDRAM, etc) are compared in terms of performance and potential for aggressive scaling. ©The Electrochemical Society.
Resumo:
Over recent years we have developed and published research aimed at producing a meshing, geometry editing and simulation system capable of handling large scale, real world applications and implemented in an end-to-end parallel, scalable manner. The particular focus of this paper is the extension of this meshing system to include conjugate meshes for multi-physics simulations. Two contrasting applications are presented: export of a body-conformal mesh to drive a commercial, third-party simulation system; and direct use of the cut-Cartesian octree mesh with a single, integrated, close-coupled multi-physics simulation system. Copyright © 2010 by W.N.Dawes.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.