48 resultados para Phase stability field
Resumo:
Liquid crystal variable phase retarders have been incorporated into prototype devices for optical communications system applications, both as endless polarization controllers 1,2,3, and as holographic beam steerers 4. Nematic liquid crystals allow continuous control of the degree of retardation induced at relatively slow switching speeds, while ferroelectric liquid crystal based devices allow fast (sub millisecond) switching, but only between two bistable states. The flexoelectro-optic effect 5,6 in short-pitch chiral nematic liquid crystals allows both fast switching of the optic axis and continuous, electric field dependent control of the degree of rotation of the optic axis. A novel geometry for the flexoelectro-optic effect is presented here, in which the helical axis of the chiral nematic is perpendicular to the cell walls (grandjean texture) and the electric field is applied in the plane of the cell. This facilitates deflection of the optic axis of the uniaxial negatively birefringent material from lying along the direction of propagation to having some component in the polarization plane of the light. The device is therefore optically neutral at zero field for telecommunications wavelengths (1550nm), and allows a continuously variable degree of phase excursion to be induced, up to 2π/3 radians achieved so far in a 40μm thick cell. The retardation has been shown both to appear, on application of the field, and disappear on removal, at speeds of 100-500 μs. The direction of deflection of the optic axis is also dependent on the direction of the field, allowing the possibility, in a converging electrode "cartwheel cell", of endless rotation of the liquid crystal waveplate at a higher rate than achievable through dielectric coupling to plain nematic materials.
Resumo:
The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.
Resumo:
A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600-700°C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100°C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material. © 1999 American Institute of Physics.
Resumo:
The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal and hence creating a series of graded index profiles, which form various optical elements such as a simple microlens array. We present the refractive index and therefore phase modulation capabilities of a CNT-LC nanophotonic device with experimental results as well as computer modeling and potential applications.
Resumo:
Gold-decorated silica nanoparticles were synthesized in a two-step process in which silica nanoparticles were produced by chemical vapor synthesis using tetraethylorthosilicate (TEOS) and subsequently decorated using two different gas-phase evaporative techniques. Both evaporative processes resulted in gold decoration of the silica particles. This study compares the mechanisms of particle decoration for a production method in which the gas and particles remain cool to a method in which the entire aerosol is heated. Results of transmission electron microscopy and visible spectroscopy studies indicate that both methods produce particles with similar morphologies and nearly identical absorption spectra, with peak absorption at 500-550 nm. A study of the thermal stability of the particles using heated-TEM indicates that the gold decoration on the particle surface remains stable at temperatures below 900 °C, above which the gold decoration begins to both evaporate and coalesce.
Resumo:
A non-weak link joining technique has been developed for YBCO pseudo-crystals fabricated by seeded peritectic solidification based on the formation of a liquid phase which segregates from the platelet boundaries at temperatures above = 920 °C. Electrical and magnetic measurements on these boundaries suggest that their irreversibility field can be as high as 7 T at 77 K in fully oxygenated pseudo-crystals joined along their crystallographic ab-planes which is comparable to the irreversibility behaviour of the adjacent YBCO grains. © 1999 IEEE.
Resumo:
In order to develop materials that exhibit enhanced flexoelectric switching in the chiral nematic phase we have identified mesogenic units that display inherently strong flexoelectric coupling capabilities. Here we examine the oxycyanobiphenyl (OCB) moiety: homologues from the nOCB series exhibit significant electro-optic switching effects when doped with a highly chiral additive. Here we have examined lower dielectric anisotropy materials, since they allow the flexoelectric response to be extended to high field amplitudes. We show that dielectric coupling strength can be low in symmetric bimesogenic molecules. The flexoelectric response of such a molecular structure is tested by doping a homologue from the series CBOnOCB with a chiral additive: very significantly we find that the optic axis is rotated through 2φ=45° in <50 μs on reversing the polarity of the field (amplitude E=±6 V μm-1). Subsequently we have synthesized room temperature chiral nematic materials that exhibit 2φ≥90° at E≈10 V μm-1. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
In this paper we will describe new bimesogenic nematic liquid crystals that have high flexoelectro-optic coefficients (e/K),of the order of 1.5 CN 1 m-1, high switching angles, up to 100° and fast response times, of the order of 100μs or less. We will describe devices constructed, using the ULH texture that may be switched to the optimum angle of 45° for a birefringence based device with the fields of 4Vμm-1 over a wide temperature range. Such devices use an "in plane" optical switching mode, have gray scale capability and a wide viewing angle. We will describe devices using the USH or Grandjean texture that have an optically isotropic "field off" black state, uses "in plane" switching E fields, to give an induced birefringence phase device, with switching times of the order of 20μs. We will briefly describe new highly reflective Blue Phase devices stable over a 50V temperature range in which an electric field is used to switch the reflection from red to green, for example. Full RGB reflections may be obtained with switching times of a few milliseconds. Finally we will briefly mention potential applications including high efficiency RGB liquid crystal laser sources. © 2006 SID.
Resumo:
For increasing the usability of a medical device the usability engineering standards IEC 60601-1-6 and IEC 62366 suggest incorporating user information in the design and development process. However, practice shows that integrating user information and the related investigation of users, called user research, is difficult in the field of medical devices. In particular, identifying the most appropriate user research methods is a difficult process. This difficulty results from the complexity of the medical device industry, especially with respect to regulations and standards, the characteristics of this market and the broad range of potential user research methods available from various research disciplines. Against this background, this study aimed at guiding designers and engineers in selecting effective user research methods according to their stage in the design process. Two approaches are described which reduce the complexity of method selection by summarizing the high number of methods into homogenous method classes. These approaches are closely connected to the medical device industry characteristic design phases and therefore provide the possibility of selecting design-phase- specific user research methods. In the first approach potential user research methods are classified after their characteristics in the design process. The second approach suggests a method summarization according to their similarity in the data collection techniques and provides an additional linkage to design phase characteristics. Both approaches have been tested in practice and the results show that both approaches facilitate user research method selection. © 2009 Springer-Verlag.
Resumo:
Thin films of nano-composite Y-Ba-Cu-O (YBCO) superconductors containing nano-sized, non-superconducting particles of Y2Ba 4CuMOx (M-2411 with M = Ag and Nb) have been prepared by the PLD technique. Electron backscatter diffraction (EBSD) has been used to analyze the crystallographic orientation of nano-particles embedded in the film microstructure. The superconducting YBa2Cu3O7 (Y-123) phase matrix is textured with a dominant (001) orientation for all samples, whereas the M-2411 phase exhibits a random orientation. Angular critical current measurements at various temperature (T) and applied magnetic field (B) have been performed on thin films containing different concentration of the M-2411 second phase. An increase in critical current density J c at T < 77 K and B < 6 T is observed for samples with low concentration of the second phase (2 mol % M-2411). Films containing 5 mol % Ag-2411 exhibit lower Jc than pure Y-123 thin films at all fields and temperatures. Samples with 5 mol % Nb-2411 show higher Jc(B) than phase pure Y-123 thin films for T < 77 K. © 2010 IOP Publishing Ltd.
Resumo:
This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.
Resumo:
Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.
Resumo:
We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched “on” and “off” reversibly in 600 µs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times.
Resumo:
We demonstrate a fast-switching (sub-millisecond) phase grating based upon a polymer stabilized short-pitch chiral nematic liquid crystal that is electrically addressed using in-plane electric fields. The combination of the short-pitch and the polymer stabilization enables the diffraction pattern to be switched on and off reversibly in 600 μs. Results are presented on the far-field diffraction pattern along with the intensity of the diffraction orders as a function of the applied electric field and the response times. © 2011 American Institute of Physics.
Resumo:
Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behavior of casing grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading, and the near-casing flow field is then investigated using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. © 2011 American Society of Mechanical Engineers.