29 resultados para Pareto optimality
Resumo:
Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller) or as an added value (risk-seeking controller) to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models. © 2010 Nagengast et al.
Resumo:
This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.
Resumo:
A visual target is more difficult to recognize when it is surrounded by other, similar objects. This breakdown in object recognition is known as crowding. Despite a long history of experimental work, computational models of crowding are still sparse. Specifically, few studies have examined crowding using an ideal-observer approach. Here, we compare crowding in ideal observers with crowding in humans. We derived an ideal-observer model for target identification under conditions of position and identity uncertainty. Simulations showed that this model reproduces the hallmark of crowding, namely a critical spacing that scales with viewing eccentricity. To examine how well the model fits quantitatively to human data, we performed three experiments. In Experiments 1 and 2, we measured observers' perceptual uncertainty about stimulus positions and identities, respectively, for a target in isolation. In Experiment 3, observers identified a target that was flanked by two distractors. We found that about half of the errors in Experiment 3 could be accounted for by the perceptual uncertainty measured in Experiments 1 and 2. The remainder of the errors could be accounted for by assuming that uncertainty (i.e., the width of internal noise distribution) about stimulus positions and identities depends on flanker proximity. Our results provide a mathematical restatement of the crowding problem and support the hypothesis that crowding behavior is a sign of optimality rather than a perceptual defect.
Resumo:
In a companion paper (McRobie(2013) arxiv:1304.3918), a simple set of `elemental' estimators was presented for the Generalized Pareto tail parameter. Each elemental estimator: involves only three log-spacings; is absolutely unbiased for all values of the tail parameter; is location- and scale-invariant; and is valid for all sample sizes $N$, even as small as $N= 3$. It was suggested that linear combinations of such elementals could then be used to construct efficient unbiased estimators. In this paper, the analogous mathematical approach is taken to the Generalised Extreme Value (GEV) distribution. The resulting elemental estimators, although not absolutely unbiased, are found to have very small bias, and may thus provide a useful basis for the construction of efficient estimators.
Resumo:
A multi-objective optimization approach was proposed for multiphase orbital rendezvous missions and validated by application to a representative numerical problem. By comparing the Pareto fronts obtained using the proposed method, the relationships between the three objectives considered are revealed, and the influences of other mission parameters, such as the sensors' field of view, can also be analyzed effectively. For multiphase orbital rendezvous missions, the tradeoff relationships between the total velocity increment and the trajectory robustness index as well as between the total velocity increment and the time of flight are obvious and clear. However, the tradeoff relationship between the time of flight and the trajectory robustness index is weak, especially for the four- and five-phase missions examined. The proposed approach could be used to reorganize a stable rendezvous profile for an engineering rendezvous mission, when there is a failure that prevents the completion of the nominal mission.
Resumo:
The problem of robust stabilization of nonlinear systems in the presence of input uncertainties is of great importance in practical implementation. Stabilizing control laws may not be robust to this type of uncertainty, especially if cancellation of nonlinearities is used in the design. By exploiting a connection between robustness and optimality, "domination redesign" of the control Lyapunov function (CLF) based Sontag's formula has been shown to possess robustness to static and dynamic input uncertainties. In this paper we provide a sufficient condition for the domination redesign to apply. This condition relies on properties of local homogeneous approximations of the system and of the CLF. We show that an inverse optimal control law may not exist when these conditions are violated and illustrate how these conditions may guide the choice of a CLF which is suitable for domination redesign. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this book several streams of nonlinear control theory are merged and di- rected towards a constructive solution of the feedback stabilization problem. Analytic, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Di®erential-geometric concepts reveal important structural properties of nonlinear systems, but al- low no margin for modeling errors. To overcome this de¯ciency, we combine them with analytic concepts of passivity, optimality and Lyapunov stability. In this way geometry serves as a guide for construction of design procedures, while analysis provides robustness tools which geometry lacks.
Resumo:
A location- and scale-invariant predictor is constructed which exhibits good probability matching for extreme predictions outside the span of data drawn from a variety of (stationary) general distributions. It is constructed via the three-parameter {\mu, \sigma, \xi} Generalized Pareto Distribution (GPD). The predictor is designed to provide matching probability exactly for the GPD in both the extreme heavy-tailed limit and the extreme bounded-tail limit, whilst giving a good approximation to probability matching at all intermediate values of the tail parameter \xi. The predictor is valid even for small sample sizes N, even as small as N = 3. The main purpose of this paper is to present the somewhat lengthy derivations which draw heavily on the theory of hypergeometric functions, particularly the Lauricella functions. Whilst the construction is inspired by the Bayesian approach to the prediction problem, it considers the case of vague prior information about both parameters and model, and all derivations are undertaken using sampling theory.
Resumo:
We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality. © 2012 AIAA.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load De ation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the fl apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and eficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same flapwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 by Nordex Energy GmbH.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - o realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 AIAA.
Resumo:
We are developing a wind turbine blade optimisation package CoBOLDT (COmputa- tional Blade Optimisation and Load Deation Tool) for the optimisation of large horizontal- axis wind turbines. The core consists of the Multi-Objective Tabu Search (MOTS), which controls a spline parameterisation module, a fast geometry generation and a stationary Blade Element Momentum (BEM) code to optimise an initial wind turbine blade design. The objective functions we investigate are the Annual Energy Production (AEP) and the apwise blade root bending moment (MY0) for a stationary wind speed of 50 m/s. For this task we use nine parameters which define the blade chord, the blade twist (4 parameters each) and the blade radius. Throughout the optimisation a number of binary constraints are defined to limit the noise emission, to allow for transportation on land and to control the aerodynamic conditions during all phases of turbine operation. The test case shows that MOTS is capable to find enhanced designs very fast and efficiently and will provide a rich and well explored Pareto front for the designer to chose from. The optimised blade de- sign could improve the AEP of the initial blade by 5% with the same apwise root bending moment or reduce MY0 by 7.5% with the original energy yield. Due to the fast runtime of order 10 seconds per design, a huge number of optimisation iterations is possible without the need for a large computing cluster. This also allows for increased design flexibility through the introduction of more parameters per blade function or parameterisation of the airfoils in future. © 2012 AIAA.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - ε realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 by the authors.
Resumo:
The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.