22 resultados para POSTURAL BALANCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major research program was carried out to analyze the mechanism of FRP debonding from concrete beams using global-energy-balance approach (GEBA). The key findings are that the fracture process zone is small so there is no R-curve to consider, failure is dominated by Mode I behavior, and the theory agrees well with tests. The analyses developed in the study provide an essential tool that will enable fracture mechanics to be used to determine the load at which FRP plates will debond from concrete beams. This obviates the need for finite element (FE) analyses in situations where reliable details of the interface geometry and crack-tip stress fields are not attainable for an accurate analysis. This paper presents an overview of the GEBA analyses that is described in detail elsewhere, and explains the slightly unconventional assumptions made in the analyses, such as the revised moment-curvature model, the location of an effective centroid, the separate consideration of the FRP and the RC beam for the purposes of the analysis, the use of Mode I fracture energies and the absence of an R-curve in the fracture mechanics analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the qualitative insight of a planar neuronal phase portrait to detect an excitability switch in arbitrary conductance-based models from a simple mathematical condition. The condition expresses a balance between ion channels that provide a negative feedback at resting potential (restorative channels) and those that provide a positive feedback at resting potential (regenerative channels). Geometrically, the condition imposes a transcritical bifurcation that rules the switch of excitability through the variation of a single physiological parameter. Our analysis of six different published conductance based models always finds the transcritical bifurcation and the associated switch in excitability, which suggests that the mathematical predictions have a physiological relevance and that a same regulatory mechanism is potentially involved in the excitability and signaling of many neurons. © 2013 Franci et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthopedic tissue engineering requires biomaterials with robust mechanics as well as adequate porosity and permeability to support cell motility, proliferation, and new extracellular matrix (ECM) synthesis. While collagen-glycosaminoglycan (CG) scaffolds have been developed for a range of tissue engineering applications, they exhibit poor mechanical properties. Building on previous work in our lab that described composite CG biomaterials containing a porous scaffold core and nonporous CG membrane shell inspired by mechanically efficient core-shell composites in nature, this study explores an approach to improve cellular infiltration and metabolic health within these core-shell composites. We use indentation analyses to demonstrate that CG membranes, while less permeable than porous CG scaffolds, show similar permeability to dense materials such as small intestine submucosa (SIS). We also describe a simple method to fabricate CG membranes with organized arrays of microscale perforations. We demonstrate that perforated membranes support improved tenocyte migration into CG scaffolds, and that migration is enhanced by platelet-derived growth factor BB-mediated chemotaxis. CG core-shell composites fabricated with perforated membranes display scaffold-membrane integration with significantly improved tensile properties compared to scaffolds without membrane shells. Finally, we show that perforated membrane-scaffold composites support sustained tenocyte metabolic activity as well as improved cell infiltration and reduced expression of hypoxia-inducible factor 1α compared to composites with nonperforated membranes. These results will guide the design of improved biomaterials for tendon repair that are mechanically competent while also supporting infiltration of exogenous cells and other extrinsic mediators of wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares a number of different moment-curvature models for cracked concrete sections that contain both steel and external fiber-reinforced polymer (FRP) reinforcement. The question of whether to use a whole-section analysis or one that considers the FRP separately is discussed. Five existing and three new models are compared with test data for moment-curvature or load deflection behavior, and five models are compared with test results for plate-end debonding using a global energy balance approach (GEBA). A proposal is made for the use of one of the simplified models. The availability of a simplified model opens the way to the production of design aids so that the GEBA can be made available to practicing engineers through design guides and parametric studies. Copyright © 2014, American Concrete Institute.