171 resultados para PILE-SOIL INTERFACE
Resumo:
Liquefaction-induced lateral spreading has been responsible for widespread damage to pile foundations in many large earthquakes. The specification of inertial and kinematic pile and pile cap demands is a particularly challenging aspect of the analysis of pile foundations in laterally spreading soils. This paper presents and examines the results from a pair of dynamic centrifuge tests focusing on pile and pile cap demands for small pile groups with different pile spacings. Inertial and kinematic pile cap forces and lateral pile group interaction are examined with regard to the overturning mechanism that dominated the pile group response. © 2014 Taylor & Francis Group.
Resumo:
Piles passing through laterally spreading slopes can be subjected to considerable loads by the soil flowing past them. Many case histories have been documented of piles which suffered failure as a result of horizontal loads exerted by the flowing soil. This paper details the results of a series of dynamic centrifuge tests carried out at Cambridge University Engineering Department, to investigate the transfer of load from the spreading soil to the piles passing through it, with particular emphasis on the effective stress state of soil elements immediately upslope and downslope of the pile. This soil stress state can be calculated by virtue of instrumentation measuring both horizontal total stress and pore pressures at locations close to the upslope and downslope faces of the piles. By comparison of results obtained for both rigid and flexible piles, conclusions will be drawn as to the effects of pile flexibility on modifying the behavior of the soil-pile system.
Resumo:
The seismic performance of waterfront cantilever sheet pile retaining walls is of continuing interest to geotechnical engineers as these structures suffer severe damage and even complete failure during earthquakes. This is often precipitated by liquefaction of the surrounding soil, either in the backfill or in front of the wall. This paper presents results from a series of small-scale plane strain models that were tested on a 1-g shaking table and recorded using a high-speed, high-resolution digital camera. The technique of Particle Image Velocimetry (PIV) was applied in order to allow the failure mechanisms to be visualised. It is shown that using PIV analyses it is possible to obtain failure mechanisms for a cantilever wall in liquefiable soil. These failure mechanisms are compared with those obtained for a cantilever wall in dry soil, previously carried out at a similar scale. It was observed that seismic liquefaction causes significant displacement in much larger zones of soil near the retaining wall compared to an equivalent dry case. The failure mechanism for a cantilever wall with liquefiable backfill, but with a remediated zone designed not to liquefy, is also presented and compared to the unremediated case.
Resumo:
This paper examines the settlement of instrumented 2 × 2 model pile groups in liquefiable soil based on the results of dynamic centrifuge tests. The piles are end-bearing in dense sand, and are instrumented such that base, shaft and total pile load components can be measured. The data suggest that the overall co-seismic group settlement is accrued from incremental settlements of the individual piles as the group rocks under the action of the kinematic and inertial lateral loads. A Newmarkian framework for describing this behaviour is presented in which permanent settlement is incremented whenever the load in any of the piles exceeds the capacity of the soil to support the pile. This bearing capacity of the piles in liquefied soil is estimated based on measured dynamic soil properties during shaking and observations of the changes in load carried by the piles. The contribution of the pile cap in reducing settlement is also discussed. © 2008 ASCE.
Resumo:
During strong earthquakes, significant excess pore pressures can develop in saturated soils. After shaking ceases, the dissipation of these pressures can cause significant soil settlement, creating downward-acting frictional loads on piled foundations. Additionally, if the piles do not support the full axial load at the end of shaking, then the proportion of the superstructure's vertical loading carried by the piles may change as a result of the soil settlement, further altering the axial load distribution on piles as the soil consolidates. In this paper, the effect of hydraulic conductivity and initial post-shaking pile head loading is investigated in terms of the changing axial load distribution and settlement responses. The investigation is carried out by considering the results from four dynamic centrifuge experiments in which a 2 × 2 pile group was embedded in a two-layer profile and subjected to strong shaking. It is found that large contrasts in hydraulic conductivity between the two layers of the soil model affected both the pile group settlements and axial load distribution. Both these results stem from the differences in excess pore pressure dissipation, part of which took place very rapidly when the underlying soil layer had a large hydraulic conductivity.
Resumo:
In typical conventional foundation design, the inherent variability of soil properties, model uncertainty and construction variability are not modeled explicitly. A main drawback of this is that the effect of each variability on the probability of an unfavorable event cannot be evaluated quantitatively. In this paper, a method to evaluate the uncertainty-reduction effect on the performance of a vertically-loaded pile foundation by monitoring the pile performance (such as pile load testing or placing sensors in piles) is proposed. The effectiveness of the proposed method is examined based on the investigation of a 120-pile foundation placed on three different ground profiles. The computed results show the capability of evaluating the uncertainty-reduction effect on the performance of a pile foundation by monitoring. © 2014 Taylor & Francis Group, London.
Resumo:
Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.
Resumo:
Settlements due to underground construction represent a risk for the architectural heritage, especially in The Netherlands, because of the combination of soft soil, fragile pile foundation and brittle, un-reinforced masonry façade. Modelling of soil-structure interaction is fundamental to assess the risk of building damage due to tunnelling. This paper presents results of finite element analyses carried out with different models for a simple masonry wall. Focus is paid on the comparison between coupled, uncoupled and semi-coupled analyses, in which the soil-structure interaction is represented in different ways. In particular, the implementation of a soil-structure interface model in the numerical analyses is analysed, in order to asses its validity. The aim of the research project is the development of a damage classification system for different building typologies.