48 resultados para Over Head Line Design
Resumo:
The software package Dymola, which implements the new, vendor-independent standard modelling language Modelica, exemplifies the emerging generation of object-oriented modelling and simulation tools. This paper shows how, in addition to its simulation capabilities, it may be used as an embodiment design tool, to size automatically a design assembled from a library of generic parametric components. The example used is a miniature model aircraft diesel engine. To this end, the component classes contain extra algebraic equations calculating the overload factor (or its reciprocal, the safety factor) for all the different modes of failure, such as buckling or tensile yield. Thus the simulation results contain the maximum overload or minimum safety factor for each failure mode along with the critical instant and the device state at which it occurs. The Dymola "Initial Conditions Calculation" function, controlled by a simple software script, may then be used to perform automatic component sizing. Each component is minimised in mass, subject to a chosen safety factor against failure, over a given operating cycle. Whilst the example is in the realm of mechanical design, it must be emphasised that the approach is equally applicable to the electrical or mechatronic domains, indeed to any design problem requiring numerical constraint satisfaction.
Resumo:
High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.
Resumo:
7.5Gb/s real-time end-to-end optical OFDM (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally, for the first time, using a live-optimized RSOA intensity modulator having a modulation bandwidth as narrow as 1GHz. Colourless real-time 16-QAM-encoded OOFDM signal transmission at 7.5Gb/s over 25km SSMF is achieved across the C-band in simple IMDD systems without in-line optical amplification and dispersion compensation. Copyright © 2010 The authors.
Resumo:
The 7.5-Gb/s real-time end-to-end optical orthogonal frequency-division- multiplexing (OOFDM) transceivers incorporating variable power loading on each individual subcarrier are demonstrated experimentally using a live-optimized reflective semiconductor optical amplifier intensity modulator having a modulation bandwidth as narrow as 1 GHz. Real-time OOFDM signal transmission at 7.5 Gb/s over 25-km standard single-mode fiber is achieved across the $C$-band in simple intensity modulation and direct detection systems without in-line optical amplification and dispersion compensation. © 2006 IEEE.
Resumo:
State and regional policies, such as low carbon fuel standards (LCFSs), increasingly mandate that transportation fuels be examined according to their greenhouse gas (GHG) emissions. We investigate whether such policies benefit from determining fuel carbon intensities (FCIs) locally to account for variations in fuel production and to stimulate improvements in FCI. In this study, we examine the FCI of transportation fuels on a lifecycle basis within a specific state, Minnesota, and compare the results to FCIs using national averages. Using data compiled from 18 refineries over an 11-year period, we find that ethanol production is highly variable, resulting in a 42% difference between carbon intensities. Historical data suggests that lower FCIs are possible through incremental improvements in refining efficiency and the use of biomass for processing heat. Stochastic modeling of the corn ethanol FCI shows that gains in certainty due to knowledge of specific refinery inputs are overwhelmed by uncertainty in parameters external to the refiner, including impacts of fertilization and land use change. The LCA results are incorporated into multiple policy scenarios to demonstrate the effect of policy configurations on the use of alternative fuels. These results provide a contrast between volumetric mandates and LCFSs. © 2011 Elsevier Ltd.
Resumo:
This paper explores the concept of partnerships between buyers and suppliers in the global automotive sector during product design and development. Partnerships are often the goal in a shift away from adversarial arms-length relationships. The objective of this research is to provide empirical evidence to explain the levels of mutual investment expected and achieved in partnerships from both buyer and supplier perspectives. During this research, 25 employees from 12 global supplier organisations who were in partnership with a specific vehicle manufacturer (VM) were interviewed. Twelve employees from this VM were also interviewed. The research showed the differences between partnerships and non-partnerships and the disparities in the expectations of investment from each partner. For suppliers and buyers to get the most out of partnerships, clear expectations and investments needed over time should be understood and agreed early in the relationship. © 2009 Elsevier B.V.All rights reserved.
Resumo:
Over the past 20 years, ferroelectric liquid crystal over silicon (FLCOS) devices have made a wide impact on applications as diverse as optical correlation and holographic projection. To cover the entire gamut of this technology would be difficult and long winded; hence, this paper describes the significant developments of FLCOS within the Engineering Department at the University of Cambridge.The purpose of this paper is to highlight the key issues in fabricating silicon backplane spatial light modulators (SLMs) and to indicate ways in which the technology can be fabricated using cheap, low-density production and manufacturability. Three main devices have been fabricated as part of several research programmes and are documented in this paper. The fast bitplane SLM and the reconfigurable optical switches for aerospace and telecommunications systems (ROSES) SLM will form the basis of a case study to outline the overall processes involved. There is a great deal of commonality in the fabrication processes for all three devices, which indicates their potential strength and demonstrates that these processes can be made independent of the SLMs that are being assembled. What is described is a generic process that can be applied to any silicon backplane SLM on a die-by-die basis. There are hundreds of factors that can affect the yield in a manufacturing process and the purpose of a good process design procedure is to minimise these factors. One of the most important features in designing a process is fabrication experience, as so many of the lessons in this business can only be learned this way. We are working with the advantage of knowing the mistakes already made in the flat panel display industry, but we are also faced with the fact that those mistakes took many years and many millions of dollars to make.The fabrication process developed here originates and adapts earlier processes from various groups around the world. There are also a few totally new processes that have now been adopted by others in the field. Many, such as the gluing process, are still on-going and have to be worked on more before they will fully suit 'manufacturability'. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The 'optimal' or 'best' design process may be the shortest or cheapest process, or the one that leads to a particularly desirable product, or to a reliable and maintainable product, or to a manufacturable product, or some combination of all of these. It is likely to satisfy the aspirations of the organisation to invest an appropriate amount of resource in the development of a specific new market opportunity, set in the context of longer-term business goals. This paper describes the progress made in over ten years of research on process modelling undertaken at the Cambridge Engineering Design Centre to identify an 'optimal' design process with which to develop an 'adequate' product.
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated. © 2012 OSA.
Resumo:
A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.
Resumo:
This paper reports the design and numerical analysis of a three-dimensional biochip plasma blood separator using computational fluid dynamics techniques. Based on the initial configuration of a two-dimensional (2D) separator, five three-dimensional (3D) microchannel biochip designs are categorically developed through axial and plenary symmetrical expansions. These include the geometric variations of three types of the branch side channels (circular, rectangular, disc) and two types of the main channel (solid and concentric). Ignoring the initial transient behaviour and assuming that steady-state flow has been established, the behaviour of the blood fluid in the devices is algebraically analysed and numerically modelled. The roles of the relevant microchannel mechanisms, i.e. bifurcation, constriction and bending channel, on promoting the separation process are analysed based on modelling results. The differences among the different 3D implementations are compared and discussed. The advantages of 3D over 2D separator in increasing separation volume and effectively depleting cell-free layer fluid from the whole cross section circumference are addressed and illustrated. © 2011 John Wiley & Sons, Ltd.
Resumo:
Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.
Resumo:
This paper introduces the design methodology of HTS bulk generator for direct-driven wind turbine. The trap field capability of HTS bulks offer the potential of maintaining similar or even higher magnetic loading level without the iron circuit in the generator. This so-called air-cored design can reduce the weight and increase the power outing per volume of the machine. The detailed design method of the air-cored HTS bulk machine is presented; 3D modeling is applied to consider the total trapped field of bulk arrays; a case study is performed to demonstrate the advantages of air-cored HTS bulk machine over conventional permanent magnet machine. Our results show that the air-cored HTS bulk machine has the potential to maintain the same magnetic loading level as that of the conventional permanent magnet machine. More importantly, it can reduce the total machine weight by 30%. © 2002-2011 IEEE.
Resumo:
The present study details the conceptual design for a 220-passenger laminar-flying-wing aircraft, utilising distributed suction, with a cruise Mach number of 0.67, over a range of 9000 km. The estimated fuel burn is 13.9 g/pax.km, demonstrating substantial gains relative to current, conventional, passenger aircraft. For comparison, a conventional aircraft with a high-mounted, unswept, wing is designed for the same mission specification, and is shown to have a fuel burn of 15 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency and is much heavier. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This paper addresses the design of algorithms for the collective optimization of a cost function defined over average quantities in the presence of limited communication. We argue that several meaningful collective optimization problems can be formulated in this way. As an application of the proposed approach, we propose a novel algorithm that achieves synchronization or balancing in phase models of coupled oscillators under mild connectedness assumptions on the (possibly time-varying and unidirectional) communication graphs. © 2006 IEEE.