229 resultados para Optical modulators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum well intermixing is a key technique for photonic integration. The intermixing of InP/InGaAs/InGaAsP material involving the deposition of a layer of sputtered SiO2 on the semiconductor surface, followed by thermal annealing has allowed good control of the intermixing process and has been used to fabricate extended cavity lasers. This will be used for optimization of the performance of optical switches consisting of passive components, modulators and amplifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model to simulate an electroabsorption modulator in a dispersive communications system is described and confirmed experimentally for a 5Gbit/s 100km system. Optimisation of the device shows that transmission of 10Gbit/s over 100km is possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent real-time optical OFDM (OOFDM) research progress is reviewed extensively in terms of adaptive transceiver design, intensity modulators, synchronisation techniques and network architectures. Results indicate that OOFDM is feasible for mass deployment in PONs. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

10Gb/s downstream and 6Gb/s upstream over 40km SSMFs are feasible for double-sideband AMOOFDM signals in wavelength-reused bidirectional-transmission colorless-WDM-PONs incorporating SOA/RSOA intensity modulators in OLTs/ONUs. Such performances are improved to 23Gb/s downstream and 8Gb/s upstream when single-sideband subcarrier-modulation is utilized. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a WDM-PON incorporating a SOA intensity modulator and a RSOA intensity modulator in the OLT and ONU, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5Gb/s. It is shown that the RB noise and crosstalk effects are the dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10Gb/s downstream and 6Gb/s upstream over 40km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing inline optical amplification and chromatic dispersion compensation. In particular, the transmission performance can be improved to 23Gb/s downstream and 8Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. Copyright © 2010 The authors.