135 resultados para Object Recognition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

RATIONALE: Impulsivity is a vulnerability marker for drug addiction in which other behavioural traits such as anxiety and novelty seeking ('sensation seeking') are also widely present. However, inter-relationships between impulsivity, novelty seeking and anxiety traits are poorly understood. OBJECTIVE: The objective of this paper was to investigate the contribution of novelty seeking and anxiety traits to the expression of behavioural impulsivity in rats. METHODS: Rats were screened on the five-choice serial reaction time task (5-CSRTT) for spontaneously high impulsivity (SHI) and low impulsivity (SLI) and subsequently tested for novelty reactivity and preference, assessed by open-field locomotor activity (OF), novelty place preference (NPP), and novel object recognition (OR). Anxiety was assessed on the elevated plus maze (EPM) both prior to and following the administration of the anxiolytic drug diazepam, and by blood corticosterone levels following forced novelty exposure. Finally, the effects of diazepam on impulsivity and visual attention were assessed in SHI and SLI rats. RESULTS: SHI rats were significantly faster to enter an open arm on the EPM and exhibited preference for novelty in the OR and NPP tests, unlike SLI rats. However, there was no dimensional relationship between impulsivity and either novelty-seeking behaviour, anxiety levels, OF activity or novelty-induced changes in blood corticosterone levels. By contrast, diazepam (0.3-3 mg/kg), whilst not significantly increasing or decreasing impulsivity in SHI and SLI rats, did reduce the contrast in impulsivity between these two groups of animals. CONCLUSIONS: This investigation indicates that behavioural impulsivity in rats on the 5-CSRTT, which predicts vulnerability for cocaine addiction, is distinct from anxiety, novelty reactivity and novelty-induced stress responses, and thus has relevance for the aetiology of drug addiction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel coarse-to-fine global localization approach inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by scale-invariant transformation feature descriptors are used as natural landmarks. They are indexed into two databases: a location vector space model (LVSM) and a location database. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the LVSM is fast, but not accurate enough, whereas localization from the location database using a voting algorithm is relatively slow, but more accurate. The integration of coarse and fine stages makes fast and reliable localization possible. If necessary, the localization result can be verified by epipolar geometry between the representative view in the database and the view to be localized. In addition, the localization system recovers the position of the camera by essential matrix decomposition. The localization system has been tested in indoor and outdoor environments. The results show that our approach is efficient and reliable. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel coarse-to-fine global localization approach that is inspired by object recognition and text retrieval techniques. Harris-Laplace interest points characterized by SIFT descriptors are used as natural land-marks. These descriptors are indexed into two databases: an inverted index and a location database. The inverted index is built based on a visual vocabulary learned from the feature descriptors. In the location database, each location is directly represented by a set of scale invariant descriptors. The localization process consists of two stages: coarse localization and fine localization. Coarse localization from the inverted index is fast but not accurate enough; whereas localization from the location database using voting algorithm is relatively slow but more accurate. The combination of coarse and fine stages makes fast and reliable localization possible. In addition, if necessary, the localization result can be verified by epipolar geometry between the representative view in database and the view to be localized. Experimental results show that our approach is efficient and reliable. ©2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The US National Academy of Engineering recently identified restoring and improving urban infrastructure as one of the grand challenges of engineering. Part of this challenge stems from the lack of viable methods to map/label existing infrastructure. For computer vision, this challenge becomes “How can we automate the process of extracting geometric, object oriented models of infrastructure from visual data?” Object recognition and reconstruction methods have been successfully devised and/or adapted to answer this question for small or linear objects (e.g. columns). However, many infrastructure objects are large and/or planar without significant and distinctive features, such as walls, floor slabs, and bridge decks. How can we recognize and reconstruct them in a 3D model? In this paper, strategies for infrastructure object recognition and reconstruction are presented, to set the stage for posing the question above and discuss future research in featureless, large/planar object recognition and modeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A visual target is more difficult to recognize when it is surrounded by other, similar objects. This breakdown in object recognition is known as crowding. Despite a long history of experimental work, computational models of crowding are still sparse. Specifically, few studies have examined crowding using an ideal-observer approach. Here, we compare crowding in ideal observers with crowding in humans. We derived an ideal-observer model for target identification under conditions of position and identity uncertainty. Simulations showed that this model reproduces the hallmark of crowding, namely a critical spacing that scales with viewing eccentricity. To examine how well the model fits quantitatively to human data, we performed three experiments. In Experiments 1 and 2, we measured observers' perceptual uncertainty about stimulus positions and identities, respectively, for a target in isolation. In Experiment 3, observers identified a target that was flanked by two distractors. We found that about half of the errors in Experiment 3 could be accounted for by the perceptual uncertainty measured in Experiments 1 and 2. The remainder of the errors could be accounted for by assuming that uncertainty (i.e., the width of internal noise distribution) about stimulus positions and identities depends on flanker proximity. Our results provide a mathematical restatement of the crowding problem and support the hypothesis that crowding behavior is a sign of optimality rather than a perceptual defect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper tackles the novel challenging problem of 3D object phenotype recognition from a single 2D silhouette. To bridge the large pose (articulation or deformation) and camera viewpoint changes between the gallery images and query image, we propose a novel probabilistic inference algorithm based on 3D shape priors. Our approach combines both generative and discriminative learning. We use latent probabilistic generative models to capture 3D shape and pose variations from a set of 3D mesh models. Based on these 3D shape priors, we generate a large number of projections for different phenotype classes, poses, and camera viewpoints, and implement Random Forests to efficiently solve the shape and pose inference problems. By model selection in terms of the silhouette coherency between the query and the projections of 3D shapes synthesized using the galleries, we achieve the phenotype recognition result as well as a fast approximate 3D reconstruction of the query. To verify the efficacy of the proposed approach, we present new datasets which contain over 500 images of various human and shark phenotypes and motions. The experimental results clearly show the benefits of using the 3D priors in the proposed method over previous 2D-based methods. © 2011 IEEE.