338 resultados para OXY-FUEL COMBUSTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of palm methyl esters (PME) as an alternative fuel for gas turbines is investigated using a swirl burner. The main air flow is preheated to 623 K, and a swirling spray flame is established at atmospheric pressure. The spray combustion characteristics of PME are compared to diesel and Jet-A1 fuel under the same burner power output of 6 kW. Investigation of the fuel atomizing characteristics using phase Doppler anemometry (PDA) shows that most droplets are distributed within the flame reaction zone region. PME droplets exhibit higher Sautermean diameter (SMD) values than baseline fuels, and thus higher droplet penetration length and longer evaporation timescales. The PME swirl flame presents a different visible flame reaction zone while combusting with low luminosity and produces no soot. NO x emissions per unit mass of fuel and per unit energy are reduced by using PME relative to those of conventional fuels. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the forced response of swirl-stabilized lean-premixed flames to acoustic forcing in a laboratory-scale stratified burner. The double-swirler, double-channel annular burner was specially designed to generate acoustic velocity oscillations and radial fuel stratification at the inlet of the combustion chamber. Temporal oscillations of equivalence ratio along the axial direction are dissipated over a long distance, and therefore the effects of time-varying fuel/air ratio on the flame response are not considered. Simultaneous measurements of inlet velocity and heat release rate oscillations were made using a hot wire anemometer and photomultiplier tubes with narrowband OH*/CH* interference filters. Time-averaged CH* chemiluminescence intensities were measured using an intensified CCD camera. Results show that flame stabilization mechanisms vary depending on stratification ratio for a constant global equivalence ratio. For a uniformly premixed condition, an enveloped M-shaped flame is observed. For stratified conditions, however, a dihedral V-flame and a detached flame are developed for outer stream and inner stream fuel enrichment cases, respectively. Flame transfer function (FTF) measurement results indicate that a V-shaped flame tends to damp incident flow oscillations, while a detached flame acts as a strong amplifier relative to the uniformly premixed condition. The phase difference of FTF increases in the presence of stratification. More importantly, the dynamic characteristics obtained from the forced stratified flame measurements are well correlated with unsteady flame behavior under limit-cycle pressure oscillations. The results presented in this paper provide insight into the impact of nonuniform reactant stoichiometry on combustion instabilities, which has not been well explored to date. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical looping combustion (CLC) uses a metal oxide (the oxygen carrier) to provide oxygen for the combustion of a fuel and gives an inherent separation of pure CO2 with minimal energy penalty. In solid-fuel CLC, volatile matter will interact with oxygen carriers. Here, the interaction between iron-based oxygen carriers and a volatile hydrocarbon (n-heptane) was investigated in both a laboratory-scale fluidised bed and a thermogravimetric analyser (TGA). Experiments were undertaken to characterise the thermal decomposition of the n-heptane occurring in the presence and in the absence of the oxygen carrier. In a bed of inert particles, carbon deposition increased with temperature and acetylene appeared as a possible precursor. For a bed of carrier consisting of pure Fe2O3, carbon deposition occurred once the Fe2O3 was fully reduced to Fe. When the Fe2O3 was doped with 10 mol % Al2O3 (Fe90Al), deposition started when the carrier was reduced to a mixture of Fe and FeAl2O4, the latter being very unreactive. Furthermore, when pure Fe2O3 was fully reduced to Fe, agglomeration of the fluidised bed occurred. However, Fe90Al did not give agglomeration even after extended reduction. The results suggest that Fe90Al is promising for the CLC of solid fuels. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We quantify the conditions that might trigger wide spread adoption of alternative fuel vehicles (AFVs) to support energy policy. Empirical review shows that early adopters are heterogeneous motivated by financial benefits, environmental appeal, new technology, and vehicle reliability. A probabilistic Monte Carlo simulation model is used to assess consumer heterogeneity for early and mass market adopters. For early adopters full battery electric vehicles (BEVs) are competitive but unable to surpass diesels or hybrids due to purchase price premium and lack of charging availability. For mass adoption, simulations indicate that if the purchase price premium of a BEV closes to within 20% of an in-class internal combustion engine (ICE) vehicle, combined with a 60% increase in refuelling availability relative to the incumbent system, BEVs become competitive. But this depends on a mass market that values the fuel economy and CO2 reduction benefits associated with BEVs. We also find that the largest influence on early adoption is financial benefit rather than pro-environmental behaviour suggesting that AFVs should be marketed by appealing to economic benefits combined with pro-environmental behaviour to motivate adoption. Monte Carlo simulations combined with scenarios can give insight into diffusion dynamics for other energy demand-side technologies. © 2012 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrodynamic instabilities in gas turbine fuel injectors help to mix the fuel and air but can sometimes lock into acoustic oscillations and contribute to thermoacoustic instability. This paper describes a linear stability analysis that predicts the frequencies and strengths of hydrodynamic instabilities and identifies the regions of the flow that cause them. It distinguishes between convective instabilities, which grow in time but are convected away by the flow, and absolute instabilities, which grow in time without being convected away. Convectively unstable flows amplify external perturbations, while absolutely unstable flows also oscillate at intrinsic frequencies. As an input, this analysis requires velocity and density fields, either from a steady but unstable solution to the Navier-Stokes equations, or from time-averaged numerical simulations. In the former case, the analysis is a predictive tool. In the latter case, it is a diagnostic tool. This technique is applied to three flows: a swirling wake at Re = 400, a single stream swirling fuel injector at Re - 106, and a lean premixed gas turbine injector with five swirling streams at Re - 106. Its application to the swirling wake demonstrates that this technique can correctly predict the frequency, growth rate and dominant wavemaker region of the flow. It also shows that the zone of absolute instability found from the spatio-temporal analysis is a good approximation to the wavemaker region, which is found by overlapping the direct and adjoint global modes. This approximation is used in the other two flows because it is difficult to calculate their adjoint global modes. Its application to the single stream fuel injector demonstrates that it can identify the regions of the flow that are responsible for generating the hydrodynamic oscillations seen in LES and experimental data. The frequencies predicted by this technique are within a few percent of the measured frequencies. The technique also explains why these oscillations become weaker when a central jet is injected along the centreline. This is because the absolutely unstable region that causes the oscillations becomes convectively unstable. Its application to the lean premixed gas turbine injector reveals that several regions of the flow are hydrodynamically unstable, each with a different frequency and a different strength. For example, it reveals that the central region of confined swirling flow is strongly absolutely unstable and sets up a precessing vortex core, which is likely to aid mixing throughout the injector. It also reveals that the region between the second and third streams is slightly absolutely unstable at a frequency that is likely to coincide with acoustic modes within the combustion chamber. This technique, coupled with knowledge of the acoustic modes in a combustion chamber, is likely to be a useful design tool for the passive control of mixing and combustion instability. Copyright © 2012 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spray combustion characteristics of rapeseed methyl esters (RME) were compared to Jet-A1 fuel using a gas turbine type combustor. The swirling spray flames for both fuels were established at a constant power output of 6 kW. The main swirling air flow was preheated to 350 C prior to coaxially enveloping the airblast-atomized liquid fuel spray at atmospheric pressure. Investigation of the fundamental spray combustion was performed via measurements of the fuel droplet sizes and velocities, gas phase flow fields and flame reaction zones. The spray flame droplets and flow fields in the combustors were characterised using phase Doppler anemometry (PDA) and particle imaging velocimetry (PIV) respectively. Flame chemiluminescence imaging was employed to identify the flame reaction zones. The highest droplet concentration zone extends along a 30 angle from the symmetry axis, inside the flame zone. Only small droplets(<17 μ) (<17 μm)are found around the centreline region, while larger droplets are found at the edge of the spray outside the flame reaction zone. RME exhibits spray characteristics similar to Jet-A1 but with droplet concentration and volume fluxes four times higher, consistent with the expected longer droplet evaporation timescale. The flow field characteristics for both RME and Jet-A1 spray flames are very similar despite the significantly different visible characteristics of the flame reaction zones. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of a class of combustion systems, suceptible to damage from self-excited combustion oscillations, is considered. An adaptive stable controller, called Self-Tuning Regulator (STR), has recently been developed, which meets the apparently contradictory challenge of relying as little as possible on a particular combustion model while providing some guarantee that the controller will cause no harm. The controller injects some fuel unsteadily into the burning region, thereby altering the heat release, in response to an input signal detecting the oscillation. This paper focuses on an extension of the STR design, when, due to stringent emission requirements and to the danger of flame extension, the amount of fuel used for control is limited in amplitude. A Lyapunov stability analysis is used to prove the stability of the modified STR when the saturation constraint is imposed. The practical implementation of the modified STR remains straightforward, and simulation results, based on the nonlinear premixed flame model developed by Dowling, show that in the presence of a saturation constraint, the self-excited oscillations are damped more rapidly with the modified STR than with the original STR. © 2001 by S. Evesque. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.