36 resultados para Norm
Resumo:
The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equipped with a Riemannian structure that leads to efficient computations. We present a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the proposed optimization scheme converges superlinearly to the global solution while maintaining complexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions efficiently for a grid of regularization parameters we propose a predictor-corrector approach that outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance of the proposed algorithm is illustrated on problems of low-rank matrix completion and multivariate linear regression. © 2013 Society for Industrial and Applied Mathematics.
Resumo:
This paper proposes a new algorithm for waveletbased multidimensional image deconvolution which employs subband-dependent minimization and the dual-tree complex wavelet transform in an iterative Bayesian framework. In addition, this algorithm employs a new prior instead of the popular ℓ1 norm, and is thus able to embed a learning scheme during the iteration which helps it to achieve better deconvolution results and faster convergence. © 2008 IEEE.
Resumo:
This paper proposes to use an extended Gaussian Scale Mixtures (GSM) model instead of the conventional ℓ1 norm to approximate the sparseness constraint in the wavelet domain. We combine this new constraint with subband-dependent minimization to formulate an iterative algorithm on two shift-invariant wavelet transforms, the Shannon wavelet transform and dual-tree complex wavelet transform (DTCWT). This extented GSM model introduces spatially varying information into the deconvolution process and thus enables the algorithm to achieve better results with fewer iterations in our experiments. ©2009 IEEE.
Resumo:
Technology roadmapping workshops are essentially a social mechanism for exploring, creating, shaping and implementing ideas. The front-end of a roadmapping session is based on brainstorming in order to tap into the group's diverse knowledge. The aim of this idea stimulation activity is to capture and share as many perspectives as possible across the full scope of the area of interest. The premise to such group brainstorming is that the sharing and exchange of ideas leads to cognitive stimulation resulting in a greater overall group idea generation performance in terms of the number, variety and originality of ideas. However, it must be recognized that the ideation stage in a roadmapping workshop is a complex psychosocial phenomenon with underlying cognitive and social processes. Thus, there are downsides to group interactions and these must be addressed in order to fully benefit from the power of a roadmapping workshop. This paper will highlight and discuss the key cognitive and social inhibitors involved. These include: production blocking, evaluation apprehension, free riding/social loafing, low norm setting/matching. Facilitation actions and process adjustments to counter such negative factors will be identified so as to provide a psychosocial basis for improving the running of roadmapping workshops. © 2009 PICMET.
Resumo:
In this paper, a strategy for min-max Moving Horizon Estimation (MHE) of a class of uncertain hybrid systems is proposed. The class of hybrid systems being considered are Piecewise Affine systems (PWA) with both continuous valued and logic components. Furthermore, we consider the case when there is a (possibly structured) norm bounded uncertainty in each subsystem. Sufficient conditions on the time horizon and the penalties on the state at the beginning of the estimation horizon to guarantee convergence of the MHE scheme will be provided. The MHE scheme will be implemented as a mixed integer semidefinite optimisation for which an efficient algorithm was recently introduced.
Restoration of images and 3D data to higher resolution by deconvolution with sparsity regularization
Resumo:
Image convolution is conventionally approximated by the LTI discrete model. It is well recognized that the higher the sampling rate, the better is the approximation. However sometimes images or 3D data are only available at a lower sampling rate due to physical constraints of the imaging system. In this paper, we model the under-sampled observation as the result of combining convolution and subsampling. Because the wavelet coefficients of piecewise smooth images tend to be sparse and well modelled by tree-like structures, we propose the L0 reweighted-L2 minimization (L0RL2 ) algorithm to solve this problem. This promotes model-based sparsity by minimizing the reweighted L2 norm, which approximates the L0 norm, and by enforcing a tree model over the weights. We test the algorithm on 3 examples: a simple ring, the cameraman image and a 3D microscope dataset; and show that good results can be obtained. © 2010 IEEE.
Resumo:
This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.