30 resultados para NON-IDEAL SYSTEM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition using optical microscopy, high resolution transmission electron microscopy and Raman spectroscopy. We find that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain-sized few layer graphene. Hence we regard this as an interesting non-metallic catalyst model system with the potential to explore graphene growth directly on a (high-k) dielectric. HfO2 nanoparticles coated with few layer graphene by atmospheric pressure CVD with methane and hydrogen at 950 °C. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition (CVD) is studied. It is found that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain-sized few layer graphene. Hence the authors of this Letter regard this as an interesting non-metallic catalyst model system with the potential to explore graphene growth directly on a (high-k) dielectric. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel statistical models are proposed and developed in this paper for automated multiple-pitch estimation problems. Point estimates of the parameters of partial frequencies of a musical note are modeled as realizations from a non-homogeneous Poisson process defined on the frequency axis. When several notes are combined, the processes for the individual notes combine to give a new Poisson process whose likelihood is easy to compute. This model avoids the data-association step of linking the harmonics of each note with the corresponding partials and is ideal for efficient Bayesian inference of unknown multiple fundamental frequencies in a signal. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iteration is unavoidable in the design process and should be incorporated when planning and managing projects in order to minimize surprises and reduce schedule distortions. However, planning and managing iteration is challenging because the relationships between its causes and effects are complex. Most approaches which use mathematical models to analyze the impact of iteration on the design process focus on a relatively small number of its causes and effects. Therefore, insights derived from these analytical models may not be robust under a broader consideration of potential influencing factors. In this article, we synthesize an explanatory framework which describes the network of causes and effects of iteration identified from the literature, and introduce an analytic approach which combines a task network modeling approach with System Dynamics simulation. Our approach models the network of causes and effects of iteration alongside the process architecture which is required to analyze the impact of iteration on design process performance. We show how this allows managers to assess the impact of changes to process architecture and to management levers which influence iterative behavior, accounting for the fact that these changes can occur simultaneously and can accumulate in non-linear ways. We also discuss how the insights resulting from this analysis can be visualized for easier consumption by project participants not familiar with simulation methods. Copyright © 2010 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of a computational study of the post-processed Galerkin methods put forward by Garcia-Archilla et al. applied to the non-linear von Karman equations governing the dynamic response of a thin cylindrical panel periodically forced by a transverse point load. We spatially discretize the shell using finite differences to produce a large system of ordinary differential equations (ODEs). By analogy with spectral non-linear Galerkin methods we split this large system into a 'slowly' contracting subsystem and a 'quickly' contracting subsystem. We then compare the accuracy and efficiency of (i) ignoring the dynamics of the 'quick' system (analogous to a traditional spectral Galerkin truncation and sometimes referred to as 'subspace dynamics' in the finite element community when applied to numerical eigenvectors), (ii) slaving the dynamics of the quick system to the slow system during numerical integration (analogous to a non-linear Galerkin method), and (iii) ignoring the influence of the dynamics of the quick system on the evolution of the slow system until we require some output, when we 'lift' the variables from the slow system to the quick using the same slaving rule as in (ii). This corresponds to the post-processing of Garcia-Archilla et al. We find that method (iii) produces essentially the same accuracy as method (ii) but requires only the computational power of method (i) and is thus more efficient than either. In contrast with spectral methods, this type of finite-difference technique can be applied to irregularly shaped domains. We feel that post-processing of this form is a valuable method that can be implemented in computational schemes for a wide variety of partial differential equations (PDEs) of practical importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents proof-certificate based sufficient conditions for the existence of Zeno behavior in hybrid systems near non-isolated Zeno equilibria. To establish these conditions, we first prove sufficient conditions for Zeno behavior in a special class of hybrid systems termed first quadrant interval hybrid systems. The proof-certificate sufficient conditions are then obtained through a collection of functions that effectively "reduce" a general hybrid system to a first quadrant interval hybrid system. This paper concludes with an application of these ideas to Lagrangian hybrid systems, resulting in easily verifiable sufficient conditions for Zeno behavior. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees and Wishart processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A boundary integral technique has been developed for the numerical simulation of the air flow for the Aaberg exhaust system. For the steady, ideal, irrotational air flow induced by a jet, the air velocity is an analytical function. The solution of the problem is formulated in the form of a boundary integral equation by seeking the solution of a mixed boundary-value problem of an analytical function based on the Riemann-Hilbert technique. The boundary integral equation is numerically solved by converting it into a system of linear algebraic equations, which are solved by the process of the Gaussian elimination. The air velocity vector at any point in the solution domain is then computed from the air velocity on the boundary of the solution domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and simple non-return-to-zero differential phase shift keying (NRZ-DPSK) wavelength division multiplexing (WDM) system, which can simultaneously demultiplex and demodulate multiple wavelengths, is proposed and investigated in this paper. The phase-to-intensity demodulation principle is based on detuned filtering, which is achieved by using a single commercial array waveguide grating (AWG) in our scheme. By properly choosing appropriate AWG channels at the transmitter, the AWG at the receiver can act as both the demultiplexer and the demodulator of the DPSK signals. Simulations at 10, 20, and 40 Gbit/s show good flexibility and performance for the proposed system. © 2009 Higher Education Press and Springer-Verlag GmbH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposed a non-intrusive method of measuring the optical beam profile at the surface of the liquid crystal on silicon (LCOS) device in an optical fiber switch. This method is based on blazed grating and can be employed in situ (on-line) for two-dimensional beam profiling in the LCOS-based optical fiber switches without introducing additional components or rearranging the system. The measured beam radius was in excellent agreement with that measured by the knife-edge technique. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a 3×3 MIMO system using RoF-enabled DAS technology is experimentally investigated in a Non-Line-Of-Sight environment. Reduced spatial correlation and improved SNR are achieved due to the larger antenna separatio © OSA/ CLEO 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a low complexity and reliable wideband spectrum sensing technique that operates at sub-Nyquist sampling rates. Unlike the majority of other sub-Nyquist spectrum sensing algorithms that rely on the Compressive Sensing (CS) methodology, the introduced method does not entail solving an optimisation problem. It is characterised by simplicity and low computational complexity without compromising the system performance and yet delivers substantial reductions on the operational sampling rates. The reliability guidelines of the devised non-compressive sensing approach are provided and simulations are presented to illustrate its superior performance. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guided self-organization can be regarded as a paradigm proposed to understand how to guide a self-organizing system towards desirable behaviors, while maintaining its non-deterministic dynamics with emergent features. It is, however, not a trivial problem to guide the self-organizing behavior of physically embodied systems like robots, as the behavioral dynamics are results of interactions among their controller, mechanical dynamics of the body, and the environment. This paper presents a guided self-organization approach for dynamic robots based on a coupling between the system mechanical dynamics with an internal control structure known as the attractor selection mechanism. The mechanism enables the robot to gracefully shift between random and deterministic behaviors, represented by a number of attractors, depending on internally generated stochastic perturbation and sensory input. The robot used in this paper is a simulated curved beam hopping robot: a system with a variety of mechanical dynamics which depends on its actuation frequencies. Despite the simplicity of the approach, it will be shown how the approach regulates the probability of the robot to reach a goal through the interplay among the sensory input, the level of inherent stochastic perturbation, i.e., noise, and the mechanical dynamics. © 2014 by the authors; licensee MDPI, Basel, Switzerland.