21 resultados para Mn ions implantation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of modeling ion implantation in a multilayer target using moments of a statistical distribution and numerical integration for dose calculation in each target layer is applied to the modelling of As+ in poly-Si/SiO2/Si. Good agreement with experiment is obtained. Copyright © 1985 by The Institute of Electrical and Electronics Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of magnetoresistive La 0.7Ca 0.3MnO 3 (LCMO) with insulating Mn 3O 4 are useful as a model system because no foreign cation is introduced in the LCMO phase by interdiffusion during the heat treatment. Here we report the magnetotransport properties as a function of sintering temperature T sinter for a fixed LCMO/Mn 3O 4 ratio. Decreasing T sinter from 1250 °C to 800 °C causes an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size (CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data for the LCMO/Mn 3O 4 composites sintered between 800 °C and 1250 °C follow the same trend line as data from the literature for pure LCMO samples with crystallite size >∼25 nm. This differs from the LFMR enhancement observed by many authors in the usual manganite composites, i.e., composites where the insulating phase contains cations other than La, Ca or Mn. This difference suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for the enhanced LFMR. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report an intriguing resistivity versus magnetic field dependence in polycrystalline composite samples containing a magnetoresistive manganite (ferromagnetic/conducting La0.7 Ca0.3 Mn O3) and a magnetic manganese oxide (ferrimagnetic/insulating Mn3 O4). At 10 K, when the magnetic field is scanned from positive to negative values, the resistance peak occurs at positive magnetic field, instead of zero or negative field as usually observed in polycrystalline manganite samples. The position of the resistance peak agrees well with the cancellation of the internal magnetic field, suggesting that the demagnetization effects are responsible for this behavior. © 2007 American Institute of Physics.