18 resultados para Mitigate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an insight into leather manufacturing processes, depicting peculiarities and challenges faced by leather industry. An analysis of this industry reveals the need for a new approach to optimize the productivity of leather processing operations, ensure consistent quality of leather, mitigate the adverse health effects in tannery workers exposed to chemicals and comply with environmental regulation. Holonic manufacturing systems (HMS) paradigm represent a bottom-up distributed approach that provides stability, adaptability, efficient use of resources and a plug and operate functionality to the manufacturing system. A vision of how HMS might operate in a tannery is illustrated presenting the rationales behind its application in this industry. © 2013 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concepts of reliability, robustness, adaptability, versatility, resilience and flexibility have been used to describe how a system design can mitigate the likely impact of uncertainties without removing their sources. With the increasing number of publications on designing systems to have such ilities, there is a need to clarify the relationships between the different ideas. This short article introduces a framework to compare these different ways in which a system can be insensitive to uncertainty, clarifying their meaning in the context of complex system design. We focus on relationships between the ilities listed above and do not discuss in detail methods to design-for-ilities. © 2013 The Author(s). Published by Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel treatment is considered a suitable way to mitigate the hazard related to potential wildfires on a landscape. However, designing an optimal spatial layout of treatment units represents a difficult optimization problem. In fact, budget constraints, the probabilistic nature of fire spread and interactions among the different area units composing the whole treatment, give rise to challenging search spaces on typical landscapes. In this paper we formulate such optimization problem with the objective of minimizing the extension of land characterized by high fire hazard. Then, we propose a computational approach that leads to a spatially-optimized treatment layout exploiting Tabu Search and General-Purpose computing on Graphics Processing Units (GPGPU). Using an application example, we also show that the proposed methodology can provide high-quality design solutions in low computing time. © 2013 The Authors. Published by Elsevier B.V.