27 resultados para Metal to insulator phase transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to disign an airfoil of which maximum lift coefficient (CL max) is not sensitive to location of forced top boundary layer transition. Taking maximizing mean value of CL max and minimizing standard deviation as biobjective, leading edge radius, manximum thickness and its location, maximum camber and its location as deterministic design variables, location of forced top boundary layer transition as stochastic variable, XFOIL as deterministic CFD solver, non-intrusive polynomial chaos as substitute of Monte Carlo method, we completed a robust airfoil design problem. Results demonstrate performance of initial airfoil is enhanced through reducing standard deviation of CL max. Besides, we also know maximum thickness has the most dominating effect on mean value of CL max, location of maximum thickness has the most dominating effect on standard deviation of CL max, maximum camber has a little effect on both mean value and standard deviation, and maximum camber is the only element of which increase can lead increase of mean value and standard deviation at the same time. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Phase Response Curve (PRC) has proven a useful tool for the reduction of complex oscillator models. It is also an information often experimentally available to the biologist. This paper introduces a numerical tool based on the sensitivity analysis of the PRC to adapt initial model parameters in order to match a particular PRC shape. We illustrate the approach on a simple biochemical model of circadian oscillator. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using numerical micromagnetics we have studied the ground state magnetization distribution of square planar ferromagnetic elements ("nanostructures"). As the element size is reduced from 250 to 2 nm at constant thickness (2-35 nm), we find that the magnetization distribution undergoes up to three phase transitions involving as many as three different near single domain states. One of these phase transitions is analogous to the reorientation phase transition observed in continuous ultrathin magnetic films. © 1998 American Institute of Physics.