20 resultados para Maximal Trade
Resumo:
Increasing product life allows the embodied emissions in products to be spread across a longer period but can mean that opportunities to improve use-phase efficiency are foregone. In this paper, a model that evaluates this trade-off is presented and used to estimate the optimal product life for a range of metal-intensive products. Two strategies that have potential to save emissions are explored: (1) adding extra embodied emissions to make products more sturdy, increasing product life, and (2) increasing frequency of use, causing early product failure to take advantage of improvements in use-phase efficiency. These strategies are evaluated for two specific case studies (long-life washing machines and more frequent use of vehicles through car clubs) and for a range of embodied and use-phase intensive products under different use-phase improvement rate assumptions. Particular emphasis is placed on the fact that products often fail neither at their design life nor at their optimal life. Policy recommendations are then made regarding the targeting of these strategies according to product characteristics and the timing of typical product failure relative to optimal product life.
Resumo:
This paper investigates the fundamental trade-offs involved in designing energy-regenerative suspensions, in particular, focusing on efficiency of power extraction and its effect on vehicle dynamics and control. It is shown that typical regenerative devices making use of linear-to-rotational elements can be modelled as a parallel arrangement of an inerter and a dissipative admittance. Taking account of typical adjustable parameters of the generator, it is shown, for a given suspension damping coefficient, that the power efficiency ratio scales with inertance. For a typical passenger vehicle, it is shown that there is a feasible compromise, namely that good efficiency is achievable with an inertance value that is not detrimental to vehicle performance. A prototype is designed and tested with a resistive termination and experimental results show good agreement between ideal and experimental admittances. The possibility to use dynamic (rather than purely resistive) loads to improve vehicle control without limiting the energy recovery is discussed. © 2013 Copyright Taylor and Francis Group, LLC.