24 resultados para Mathematical-theory
Resumo:
The developing vertebrate gut tube forms a reproducible looped pattern as it grows into the body cavity. Here we use developmental experiments to eliminate alternative models and show that gut looping morphogenesis is driven by the homogeneous and isotropic forces that arise from the relative growth between the gut tube and the anchoring dorsal mesenteric sheet, tissues that grow at different rates. A simple physical mimic, using a differentially strained composite of a pliable rubber tube and a soft latex sheet is consistent with this mechanism and produces similar patterns. We devise a mathematical theory and a computational model for the number, size and shape of intestinal loops based solely on the measurable geometry, elasticity and relative growth of the tissues. The predictions of our theory are quantitatively consistent with observations of intestinal loops at different stages of development in the chick embryo. Our model also accounts for the qualitative and quantitative variation in the distinct gut looping patterns seen in a variety of species including quail, finch and mouse, illuminating how the simple macroscopic mechanics of differential growth drives the morphology of the developing gut.
Resumo:
Modeling work in neuroscience can be classified using two different criteria. The first one is the complexity of the model, ranging from simplified conceptual models that are amenable to mathematical analysis to detailed models that require simulations in order to understand their properties. The second criterion is that of direction of workflow, which can be from microscopic to macroscopic scales (bottom-up) or from behavioral target functions to properties of components (top-down). We review the interaction of theory and simulation using examples of top-down and bottom-up studies and point to some current developments in the fields of computational and theoretical neuroscience.