29 resultados para Marine systems modelling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A lumped parameter thermal model has been constructed for a tubular linear machine that has been designed for use in a marine environment. It shows good correlation to both steady state and transient experimental tests on the machine. The model has been developed for a stationary machine in a laboratory environment - the modelling techniques used and enhancements to enable the application of the model directly to marine scenarios are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gaussian processes are gaining increasing popularity among the control community, in particular for the modelling of discrete time state space systems. However, it has not been clear how to incorporate model information, in the form of known state relationships, when using a Gaussian process as a predictive model. An obvious example of known prior information is position and velocity related states. Incorporation of such information would be beneficial both computationally and for faster dynamics learning. This paper introduces a method of achieving this, yielding faster dynamics learning and a reduction in computational effort from O(Dn2) to O((D - F)n2) in the prediction stage for a system with D states, F known state relationships and n observations. The effectiveness of the method is demonstrated through its inclusion in the PILCO learning algorithm with application to the swing-up and balance of a torque-limited pendulum and the balancing of a robotic unicycle in simulation. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed lumped-parameter thermal model is presented for a tubular linear machine that has been designed for use in a marine environment. The model has been developed for a static machine, the worst-case thermal scenario, and is used to establish a rating for the machine. The model has been validated against a large range of experimental tests and shows good correlation to both steady-state and transient experimental results. The model was constructed from a mostly theoretical basis with very little calibration, suggesting that the techniques used are applicable in a more general sense. © 2013 IEEE.