58 resultados para Manufacturing processes parameters


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple composite design methodology has been developed from the basic principles of composite component failure. This design approach applies the principles of stress field matching to develop suitable reinforcement patterns around three-dimensional details such as lugs in mechanical components. The resulting patterns are essentially curvilinear orthogonal meshes, adjusted to meet the restrictions imposed by geometric restraints and the intended manufacturing process. Whilst the principles behind the design methodology can be applied to components produced by differing manufacturing processes, the results found from looking at simple generic example problems suggest a realistic and practical generic manufacturing approach. The underlying principles of the design methodology are described and simple analyses are used to help illustrate both the methodology and how such components behave. These analyses suggest it is possible to replace high-strength steel lugs with composite components whose strength-to-weight ratio is some 4-5 times better. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engineering companies face many challenges today such as increased competition, higher expectations from consumers and decreasing product lifecycle times. This means that product development times must be reduced to meet these challenges. Concurrent engineering, reuse of engineering knowledge and the use of advanced methods and tools are among the ways of reducing product development times. Concurrent engineering is crucial in making sure that the products are designed with all issues considered simultaneously. The reuse of engineering knowledge allows existing solutions to be reused. It can also help to avoid the mistakes made in previous designs. Computer-based tools are used to store information, automate tasks, distribute work, perform simulation and so forth. This research concerns the evaluation of tools that can be used to support the design process. These tools are evaluated in terms of the capture of information generated during the design process. This information is vital to allow the reuse of knowledge. Present CAD systems store only information on the final definition of the product such as geometry, materials and manufacturing processes. Product Data Management (PDM) systems can manage all this CAD information along with other product related information. The research includes the evaluation of two PDM systems, Windchill and Metaphase, using the design of a single-handed water tap as a case study. The two PDMs were then compared to PROSUS/DDM. PROSUS is the Process-Based Support System proposed by [Blessing 94] using the same case study. The Design Data Model is the product data model that includes PROSUS. The results look promising. PROSUS/DDM is able to capture most design information and structure and present it logically. The design process and product information is related and stored within the DDM structure. The PDMs can capture most design information, but information from early stages of design is stored only as unstructured documentation. Some problems were found with PROSUS/DDM. A proposal is made that may make it possible to resolve these problems, but this will require further research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Board-level optical links are an attractive alternative to their electrical counterparts as they provide higher bandwidth and lower power consumption at high data rates. However, on-board optical technology has to be cost-effective to be commercially deployed. This study presents a chip-to-chip optical interconnect formed on an optoelectronic printed circuit board that uses a simple optical coupling scheme, cost-effective materials and is compatible with well-established manufacturing processes common to the electronics industry. Details of the link architecture, modelling studies of the link's frequency response, characterisation of optical coupling efficiencies and dynamic performance studies of this proof-of-concept chip-to-chip optical interconnect are reported. The fully assembled link exhibits a -3 dBe bandwidth of 9 GHz and -3 dBo tolerances to transverse component misalignments of ±25 and ±37 μm at the input and output waveguide interfaces, respectively. The link has a total insertion loss of 6 dBo and achieves error-free transmission at a 10 Gb/s data rate with a power margin of 11.6 dBo for a bit-error-rate of 10 -12. The proposed architecture demonstrates an integration approach for high-speed board-level chip-to-chip optical links that emphasises component simplicity and manufacturability crucial to the migration of such technology into real-world commercial systems. © 2012 The Institution of Engineering and Technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage to power system apparatus and allowing more flexibility in power system design and operation. The device can also help avoid replacing circuit breakers whose capacity has been exceeded. Due to limitations in current YBCO thin film manufacturing processes, it is not easy to obtain one large thin film that satisfies the specifications for high voltage and large current applications. The combination of standardized thin films has merit to reduce costs and maintain device quality, and it is necessary to connect these thin films in different series and parallel configurations in order to meet these specifications. In this paper, the design of a resistive type SFCL using parallel-connected YBCO thin films is discussed, including the role of a parallel resistor and the influence of individual thin film characteristics, based on both theory and experimental results. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ever increasing demands on functional integration of high strength light weight products leads to the development of a new class of manufacturing processes. The application of bulk forming processes to sheet or plate semi-finished products, sometimes in combination with conventional sheet forming processes creates new products with the requested properties. The paper defines this new class of sheet-bulk metal forming processes, gives an overview of the existing processes belonging to this class, highlights the tooling aspects as well as the resulting product properties and presents a short summary of the relevant work that has been done towards modeling and simulation. © 2012 CIRP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive magnesia (MgO) has emerged as an essential component in a new family of cements with significantly superior technical and environmental performance over Portland cement. The physical characteristics of different reactive magnesia, which are likely to affect their engineering performance, vary considerably depending on their origin and manufacturing processes. To appropriately utilise such a material, it is essential to develop a better understanding of the characteristics of different magnesia from various sources. In this study, the detailed characterisation of 14 commercial magnesia in terms of reactivity, textural properties, X-ray diffraction pattern, pH value and hydration behaviour and morphology is presented and correlation between them is developed. Relationships were developed between the reactivity, specific surface area, agglomeration ratio and hydration rate based on the experimental observations. As a result, the reactive magnesia used in this study were grouped into three categories and their characteristics and anticipated performances in different applications were discussed.