44 resultados para Maillard Reaction


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general equation for a variance parameter, appearing as a crucial quantity in a simple algebraic expression for the mean chemical rate, is derived. This derivation is based on a flamelet approach to model a turbulent premixed flame, for high but finite values of the Damköhler number. Application of this equation to the case of a planar turbulent flame normal to the oncoming flow of reactants gives good agreement with DNS data corresponding to three different values of the Damköhler number and two values of the heat release parameter. © 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damkhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damkhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation. © 2011 Nilanjan Chakraborty et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a "break-even clearance" at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the "offset loss". This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model. © 2010 by ASME.