44 resultados para MOTOR LEARNING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful motor performance requires the ability to adapt motor commands to task dynamics. A central question in movement neuroscience is how these dynamics are represented. Although it is widely assumed that dynamics (e.g., force fields) are represented in intrinsic, joint-based coordinates (Shadmehr R, Mussa-Ivaldi FA. J Neurosci 14: 3208-3224, 1994), recent evidence has questioned this proposal. Here we reexamine the representation of dynamics in two experiments. By testing generalization following changes in shoulder, elbow, or wrist configurations, the first experiment tested for extrinsic, intrinsic, or object-centered representations. No single coordinate frame accounted for the pattern of generalization. Rather, generalization patterns were better accounted for by a mixture of representations or by models that assumed local learning and graded, decaying generalization. A second experiment, in which we replicated the design of an influential study that had suggested encoding in intrinsic coordinates (Shadmehr and Mussa-Ivaldi 1994), yielded similar results. That is, we could not find evidence that dynamics are represented in a single coordinate system. Taken together, our experiments suggest that internal models do not employ a single coordinate system when generalizing and may well be represented as a mixture of coordinate systems, as a single system with local learning, or both.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This review will focus on four areas of motor control which have recently been enriched both by neural network and control system models: motor planning, motor prediction, state estimation and motor learning. We will review the computational foundations of each of these concepts and present specific models which have been tested by psychophysical experiments. We will cover the topics of optimal control for motor planning, forward models for motor prediction, observer models of state estimation arid modular decomposition in motor learning. The aim of this review is to demonstrate how computational approaches, as well as proposing specific models, provide a theoretical framework to formalize the issues in motor control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Humans have exceptional abilities to learn new skills, manipulate tools and objects, and interact with our environment. In order to be successful at these tasks, our brain has developed learning mechanisms to deal with and compensate for the constantly changing dynamics of the world. If this mechanism or mechanisms can be understood from a computational point of view, then they can also be used to drive the adaptability and learning of robots. In this paper, we will present a new technique for examining changes in the feedforward motor command due to adaptation. This technique can then be utilized for examining motor adaptation in humans and determining a computational algorithm which explains motor learning. © 2007.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities-whether it is snowboarding or ballroom dancing-but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved. © 2011 Macmillan Publishers Limited. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both object manipulation and force-field adaptation, contrary to previous models, memory decay is highly context dependent. We show that the decay of memory associated with a given context is greatest for movements made in that context, with more distant contexts showing markedly reduced decay. Thus, both memory formation and decay are strongest for the current context. We propose that this apparently paradoxical organization provides a mechanism for optimizing performance. While memory decay tends to reduce force output, memory formation can correct for any errors that arise, allowing the motor system to regulate force output so as to both minimize errors and avoid unnecessary energy expenditure. The motor commands for any given context thus result from a balance between memory formation and decay, while memories for other contexts are preserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review will focus on the possibility that the cerebellum contains an internal model or models of the motor apparatus. Inverse internal models can provide the neural command necessary to achieve some desired trajectory. First, we review the necessity of such a model and the evidence, based on the ocular following response, that inverse models are found within the cerebellar circuitry. Forward internal models predict the consequences of actions and can be used to overcome time delays associated with feedback control. Secondly, we review the evidence that the cerebellum generates predictions using such a forward model. Finally, we review a computational model that includes multiple paired forward and inverse models and show how such an arrangement can be advantageous for motor learning and control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robotic manipulanda are extensively used in investigation of the motor control of human arm movements. They permit the application of translational forces to the arm based on its state and can be used to probe issues ranging from mechanisms of neural control to biomechanics. However, most current designs are optimized for studying either motor learning or stiffness. Even fewer include end-point torque control which is important for the simulation of objects and the study of tool use. Here we describe a modular, general purpose, two-dimensional planar manipulandum (vBOT) primarily optimized for dynamic learning paradigms. It employs a carbon fibre arm arranged as a parallelogram which is driven by motors via timing pulleys. The design minimizes the intrinsic dynamics of the manipulandum without active compensation. A novel variant of the design (WristBOT) can apply torques at the handle using an add-on cable drive mechanism. In a second variant (StiffBOT) a more rigid arm can be substituted and zero backlash belts can be used, making the StiffBOT more suitable for the study of stiffness. The three variants can be used with custom built display rigs, mounting, and air tables. We investigated the performance of the vBOT and its variants in terms of effective end-point mass, viscosity and stiffness. Finally we present an object manipulation task using the WristBOT. This demonstrates that subjects can perceive the orientation of the principal axis of an object based on haptic feedback arising from its rotational dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, we demonstrated that humans can learn to make accurate movements in an unstable environment by controlling magnitude, shape, and orientation of the endpoint impedance. Although previous studies of human motor learning suggest that the brain acquires an inverse dynamics model of the novel environment, it is not known whether this control mechanism is operative in unstable environments. We compared learning of multijoint arm movements in a "velocity-dependent force field" (VF), which interacted with the arm in a stable manner, and learning in a "divergent force field" (DF), where the interaction was unstable. The characteristics of error evolution were markedly different in the 2 fields. The direction of trajectory error in the DF alternated to the left and right during the early stage of learning; that is, signed error was inconsistent from movement to movement and could not have guided learning of an inverse dynamics model. This contrasted sharply with trajectory error in the VF, which was initially biased and decayed in a manner that was consistent with rapid feedback error learning. EMG recorded before and after learning in the DF and VF are also consistent with different learning and control mechanisms for adapting to stable and unstable dynamics, that is, inverse dynamics model formation and impedance control. We also investigated adaptation to a rotated DF to examine the interplay between inverse dynamics model formation and impedance control. Our results suggest that an inverse dynamics model can function in parallel with an impedance controller to compensate for consistent perturbing force in unstable environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies examining adaptation to unexpected changes in the mechanical environment highlight the use of position error in the adaptation process. However, force information is also available. In this chapter, we examine adaptation processes in three separate studies where the mechanical environment was changed intermittently. We compare the expected consequences of using position error and force information in the changes to motor commands following a change in the mechanical environment. In general, our results support the use of position error over force information and are consistent with current computational models of motor learning. However, in situations where the change in the mechanical environment eliminates position error the central nervous system does not necessarily respond as would be predicted by these models. We suggest that it is necessary to take into account the statistics of prior experience to account for our observations. Another deficiency in these models is the absence of a mechanism for modulating limb mechanical impedance during adaptation. We propose a relatively simple computational model based on reflex responses to perturbations which is capable of accounting for iterative changes in temporal patterns of muscle co-activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of recent studies suggest that humans can form internal models that they use in a feedforward manner to compensate for both stable and unstable dynamics. To examine how internal models are formed, we performed adaptation experiments in novel dynamics, and measured the endpoint force, trajectory and EMG during learning. Analysis of reflex feedback and change of feedforward commands between consecutive trials suggested a unified model of motor learning, which can coherently unify the learning processes observed in stable and unstable dynamics and reproduce available data on motor learning. To our knowledge, this algorithm, based on the concurrent minimization of (reflex) feedback and muscle activation, is also the first nonlinear adaptive controller able to stabilize unstable dynamics.