288 resultados para MECHANICAL RESONATOR
Resumo:
3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.
Resumo:
The acoustic response of conventional mechanical oscillators, such as a piezoelectric crystal, is predominantly harmonic at modest amplitudes. However, here, we observe from the electrical response that significant motional anharmonicity is introduced in the presence of attached analyte. Experiments were conducted with streptavidin-coated polystyrene microbeads of various sizes attached to a quartz crystal resonator via specific and nonspecific molecular tethers in liquid. Quantitative analysis reveals that the deviation of odd Fourier harmonics of the response caused by introduction of microbeads as a function of oscillation amplitude presents a unique signature of the molecular tether. Hence, the described anharmonic detection technique (ADT) based on this function allows screening of biomolecules and provides an additional level of selectivity in receptor-based detection that is often associated with nonspecific interactions. We also propose methods to extract mechanical force-extension characteristics of the molecular tether and activation energy using this technique.
Resumo:
Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.
Resumo:
Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.
Resumo:
We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.
Resumo:
A single-crystal silicon resonant bulk acoustic mass sensor with a measured resolution of 125 pg cm2 is presented. The mass sensor comprises a micromachined silicon plate that is excited in the square-extensional bulk acoustic resonant mode at a frequency of 2.182 MHz, with a quality factor exceeding 106. The mass sensor has a measured mass to frequency shift sensitivity of 132 Hz cm2 μg. The resonator element is embedded in a feedback loop of an electronic amplifier to implement an oscillator with a short term frequency stability of better than 7 ppb at an operating pressure of 3.8 mTorr. © 2007 American Institute of Physics.
Resumo:
This paper reports the design and electrical characterization of a micromechanical disk resonator fabricated in single crystal silicon using a foundry SOI micromachining process. The microresonator has been selectively excited in the radial extensional and the wine glass modes by reversing the polarity of the DC bias voltage applied on selected drive electrodes around the resonant structure. The quality factor of the resonator vibrating in the radial contour mode was 8000 at a resonant frequency of 6.34 MHz at pressure below 10 mTorr vacuum. The highest measured quality factor of the resonator in the wine glass resonant mode was 1.9 × 106 using a DC bias voltage of 20 V at about the same pressure in vacuum; the resonant frequency was 5.43 MHz and the lowest motional resistance measured was approximately 17 kΩ using a DC bias voltage of 60 V applied across 2.7 μm actuation gaps. This corresponds to a resonant frequency-quality factor (f-Q) product of 1.02 × 1013, among the highest reported for single crystal silicon microresonators, and on par with the best quartz crystal resonators. The quality factor for the wine glass mode in air was approximately 10,000. © 2009 Elsevier B.V. All rights reserved.