20 resultados para MARGINAL STRUCTURAL MODELS
Resumo:
Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.
Resumo:
Contaminated land remediation has traditionally been viewed as sustainable practice because it reduces urban sprawl and mitigates risks to human being and the environment. However, in an emerging green and sustainable remediation (GSR) movement, remediation practitioners have increasingly recognized that remediation operations have their own environmental footprint. The GSR calls for sustainable behaviour in the remediation industry, for which a series of white papers and guidance documents have been published by various government agencies and professional organizations. However, the relationship between the adoption of such sustainable behaviour and its underlying driving forces has not been studied. This study aims to contribute to sustainability science by rendering a better understanding of what drives organizational behaviour in adopting sustainable practices. Factor analysis (FA) and structural equation modelling (SEM) were used to investigate the relationship between sustainable practices and key factors driving these behaviour changes in the remediation field. A conceptual model on sustainability in the environmental remediation industry was developed on the basis of stakeholder and institutional theories. The FA classified sustainability considerations, institutional promoting and impeding forces, and stakeholder's influence. Subsequently the SEM showed that institutional promoting forces had significant positive effects on adopting sustainability measures, and institutional impeding forces had significant negative effects. Stakeholder influences were found to have only marginal direct effect on the adoption of sustainability; however, they exert significant influence on institutional promoting forces, thus rendering high total effect (i.e. direct effect plus indirect effect) on the adoption of sustainability. This study suggests that sustainable remediation represents an advanced sustainable practice, which may only be fully endorsed by both internal and external stakeholders after its regulatory, normative and cognitive components are institutionalized. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress-strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models. © 2013 Elsevier Ltd.
Resumo:
This paper compares a number of different moment-curvature models for cracked concrete sections that contain both steel and external fiber-reinforced polymer (FRP) reinforcement. The question of whether to use a whole-section analysis or one that considers the FRP separately is discussed. Five existing and three new models are compared with test data for moment-curvature or load deflection behavior, and five models are compared with test results for plate-end debonding using a global energy balance approach (GEBA). A proposal is made for the use of one of the simplified models. The availability of a simplified model opens the way to the production of design aids so that the GEBA can be made available to practicing engineers through design guides and parametric studies. Copyright © 2014, American Concrete Institute.