164 resultados para Liquid bulk cargo.
Resumo:
Reconfigurable liquid crystal microlenses employing arrays of multiwalled carbon nanotubes (MWNTs) have been designed and fabricated. The cells consist of arrays of 2 microm high MWNTs grown by plasma-enhanced chemical vapor deposition on silicon with a top electrode of indium tin oxide coated glass positioned 20 microm above the silicon and the gap filled with the nematic liquid crystal BLO48. Simulations have found that, while its nematic liquid crystal aligns with MWNTs within a distance of 10nm, this distance is greatly enhanced by the application of an external electric field. Polarized light experiments show that light is focused with focal lengths ranging from approximately 7 microm to 12 microm.
Resumo:
Tunable materials with high anisotropy of refractive index and low loss are of particular interest in the microwave and terahertz range. Nematic liquid crystals are highly sensitive to electric and magnetic fields and may be designed to have particularly high birefringence. In this paper we investigate birefringence and absorption losses in an isothiocyanate based liquid crystal (designed for high anisotropy) in a broad range of the electromagnetic spectrum, namely 0.1-4 GHz, 30 GHz, 0.5-1.8 THz, and in the visible and near-infrared region (400 nm-1600 nm). We report high birefringence (Δn = 0.19-0.395) and low loss in this material. This is attractive for tunable microwave and terahertz device applications.
Resumo:
Liquid crystal variable phase retarders have been incorporated into prototype devices for optical communications system applications, both as endless polarization controllers 1,2,3, and as holographic beam steerers 4. Nematic liquid crystals allow continuous control of the degree of retardation induced at relatively slow switching speeds, while ferroelectric liquid crystal based devices allow fast (sub millisecond) switching, but only between two bistable states. The flexoelectro-optic effect 5,6 in short-pitch chiral nematic liquid crystals allows both fast switching of the optic axis and continuous, electric field dependent control of the degree of rotation of the optic axis. A novel geometry for the flexoelectro-optic effect is presented here, in which the helical axis of the chiral nematic is perpendicular to the cell walls (grandjean texture) and the electric field is applied in the plane of the cell. This facilitates deflection of the optic axis of the uniaxial negatively birefringent material from lying along the direction of propagation to having some component in the polarization plane of the light. The device is therefore optically neutral at zero field for telecommunications wavelengths (1550nm), and allows a continuously variable degree of phase excursion to be induced, up to 2π/3 radians achieved so far in a 40μm thick cell. The retardation has been shown both to appear, on application of the field, and disappear on removal, at speeds of 100-500 μs. The direction of deflection of the optic axis is also dependent on the direction of the field, allowing the possibility, in a converging electrode "cartwheel cell", of endless rotation of the liquid crystal waveplate at a higher rate than achievable through dielectric coupling to plain nematic materials.
Resumo:
In this paper, we demonstrate strong flexoelectric coupling in bimesogenic liquid crystals. This strong coupling is determined via the flexoelectro-optic effect in chiral nematic liquid crystals based on bimesogenic mixtures that are doped with low concentrations of high twisting power chiral additive. Two mixtures were examined: one had a pitch length of p∼300nm, the other had a pitch length of p∼600nm. These mixtures exhibit enantiotropic chiral nematic phases close to room temperature. We found that full-intensity modulation, that is, a rotation of the optic axis of 45° between crossed polarizers, could be achieved at significantly lower applied electric fields (E<5Vμm -1) than previously reported. In fact, for the condition of full-intensity modulation, the lowest electric-field strength recorded was E=2Vμm-1. As a result of a combination of the strong flexoelectric coupling and a divergence in the pitch, tilt angles of the optic axis up to 87°, i.e., a rotation of the optic axis through 174°, were observed. Furthermore, the flexoelastic ratios, which may be considered as a figure-of-merit parameter, were calculated from the results and found to be large, ranging from 1.3to2C/Nm for a temperature range of up to 40°C. © 2006 American Institute of Physics.
Resumo:
In this paper, we report on the flexoelastic and viscoelastic ratios for a number of bimesogens compounds with the same generic structure. Values are obtained indirectly by measuring the flexoelectro-optic response in the chiral nematic phase. By varying the molecular structure we alter the bend angle, transverse dipole moment, and length of the molecule. First, to examine the influence of the bend angle we use a homologous series whereby the only alteration in the molecular structure is the number of methylene units in the aliphatic spacer, n. Results show that the flexoelastic ratio, e K, and the effective flexoelectric coefficient, e, both exhibit an odd-even effect with values for n=odd being greater than that for n=even. This is understood in terms of an increase in the bend angle of the molecule and an increase in the transverse dipole moment. Second, in order to investigate the impact of the dipole moment, we have altered the mesogenic units so as to vary the longitudinal dipole moment and used different linkages in the aliphatic spacer in an attempt to alter the transverse dipole moment. Qualitatively, the results demonstrate that the odd-spaced bimesogen with larger transverse dipole moments exhibit larger flexoelastic ratios. © 2007 The American Physical Society.
Resumo:
The magnetisation of bulk high temperature superconductors (HTS), such as RE-Ba-Cu-O [(RE)BCO, where RE is a rare earth element or Y], by a practical technique is essential for their application in high field, permanent magnet-like devices. Research to-date into the pulsed field magnetisation (PFM) of these materials, however, has been limited generally to experimental techniques, with relatively little progress in the development of theoretical models. This is because not only is a multi-physics approach needed to take account of the heating of the samples but also the high electric fields generated are well above the regime in which there are reliable experimental results. This paper describes a framework of theoretical simulation using the finite element method (FEM) that is applicable to both single- and multi-pulse magnetisation processes of (RE)BCO bulk superconductors. The model incorporates the heat equation and provides a convenient way of determining the distribution of trapped field, current density and temperature change within a bulk superconductor at each stage of the magnetisation process. An example of the single-pulse magnetisation of a (RE)BCO bulk is described. Potentially, the model may serve as a cost-effective tool for the optimisation of the bulk geometry and the magnetisation profile in multi-pulse magnetisation processes. © 2010 IOP Publishing Ltd.
Resumo:
Liquid crystal on silicon (LCOS) is one of the most exciting technologies, combining the optical modulation characteristics of liquid crystals with the power and compactness of a silicon backplane. The objective of our work is to improve cell assembly and inspection methods by introducing new equipment for automated assembly and by using an optical inspection microscope. A Suss-Micro'Tec Universal device bonder is used for precision assembly and device packaging and an Olympus BX51 high resolution microscope is employed for device inspection. ©2009 Optical Society of America.
Resumo:
Thickness of the near-interface regions (NIR) and central bulk ohmic resistivity in lead lanthanum zirconate titanate ferroelectric thin films were investigated. A method to separate the low-resistive near-interface regions (NIRs) from the high-resistive central bulk region (CBR) in ferroelectric thin films was presented. Results showed that the thickness of the NIRs depended on the electrode materials in use and the CBR resistivity depended on the impurity doping levels.
Resumo:
Microarraying involves laying down genetic elements onto a solid substrate for DNA analysis on a massively parallel scale. Microarrays are prepared using a pin-based robotic platform to transfer liquid samples from microtitre plates to an array pattern of dots of different liquids on the surface of glass slides where they dry to form spots diameter < 200 μm. This paper presents the design, materials selection, micromachining technology and performance of reservoir pins for microarraying. A conical pin is produced by (i) conventional machining of stainless steel or wet etching of tungsten wire, followed by (ii) micromachining with a focused laser to produce a microreservoir and a capillary channel structure leading from the tip. The pin has a flat end diameter < 100 μm from which a 500 μm long capillary channel < 15 μm wide leads up the pin to a reservoir. Scanning electron micrographs of the metal surface show roughness on the scale of 10 μm, but the pins nevertheless give consistent and reproducible spotting performance. The pin capacity is 80 nanolitres of fluid containing DNA, and at least 50 spots can be printed before replenishing the reservoir. A typical robot holds can hold up to 64 pins. This paper discusses the fabrication technology, the performance and spotting uniformity for reservoir pins, the possible limits to miniaturization of pins using this approach, and the future prospects for contact and non-contact arraying technology.