34 resultados para Linear free energy relationship.
Resumo:
The recently introduced nested sampling algorithm allows the direct and efficient calculation of the partition function of atomistic systems. We demonstrate its applicability to condensed phase systems with periodic boundary conditions by studying the three dimensional hard sphere model. Having obtained the partition function, we show how easy it is to calculate the compressibility and the free energy as functions of the packing fraction and local order, verifying that the transition to crystallinity has a very small barrier, and that the entropic contribution of jammed states to the free energy is negligible for packing fractions above the phase transition. We quantify the previously proposed schematic phase diagram and estimate the extent of the region of jammed states. We find that within our samples, the maximally random jammed configuration is surprisingly disordered.
Resumo:
We study two distinctly ordered condensed phases of polypeptide molecules, amyloid fibrils and amyloidlike microcrystals, and the first-order twisting phase transition between these two states. We derive a single free-energy form which connects both phases. Our model identifies relevant degrees of freedom for describing the collective behavior of supramolecular polypeptide structures, reproduces accurately the results from molecular dynamics simulations as well as from experiments, and sheds light on the uniform nature of the dimensions of different peptide fibrils. © 2012 American Physical Society.
Resumo:
Evaluating free energy profiles of chemical reactions in complex environments such as solvents and enzymes requires extensive sampling, which is usually performed by potential of mean force (PMF) techniques. The reliability of the sampling depends not only on the applied PMF method but also the reaction coordinate space within the dynamics is biased. In contrast to simple geometrical collective variables that depend only on the positions of the atomic coordinates of the reactants, the E(gap) reaction coordinate (the energy difference obtained by evaluating a suitable force field using reactant and product state topologies) has the unique property that it is able to take environmental effects into account leading to better convergence, a more faithful description of the transition state ensemble and therefore more accurate free energy profiles. However, E(gap) requires predefined topologies and is therefore inapplicable for multistate reactions, in which the barrier between the chemically equivalent topologies is comparable to the reaction activation barrier, because undesired "side reactions" occur. In this article, we introduce a new energy-based collective variable by generalizing the E(gap) reaction coordinate such that it becomes invariant to equivalent topologies and show that it yields more well behaved free energy profiles than simpler geometrical reaction coordinates.
Resumo:
Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.
Resumo:
We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.
Resumo:
Variational methods are a key component of the approximate inference and learning toolbox. These methods fill an important middle ground, retaining distributional information about uncertainty in latent variables, unlike maximum a posteriori methods (MAP), and yet generally requiring less computational time than Monte Carlo Markov Chain methods. In particular the variational Expectation Maximisation (vEM) and variational Bayes algorithms, both involving variational optimisation of a free-energy, are widely used in time-series modelling. Here, we investigate the success of vEM in simple probabilistic time-series models. First we consider the inference step of vEM, and show that a consequence of the well-known compactness property of variational inference is a failure to propagate uncertainty in time, thus limiting the usefulness of the retained distributional information. In particular, the uncertainty may appear to be smallest precisely when the approximation is poorest. Second, we consider parameter learning and analytically reveal systematic biases in the parameters found by vEM. Surprisingly, simpler variational approximations (such a mean-field) can lead to less bias than more complicated structured approximations.
Resumo:
Significant improvements in the spatial and temporal uniformities of device switching parameters are successfully demonstrated in Ge/TaOx bilayer-based resistive switching devices, as compared with non-Ge devices. In addition, the reported Ge/TaOx devices also show significant reductions in the operation voltages. Influence of the Ge layer on the resistive switching of TaOx-based resistive random access memory is investigated by X-ray spectroscopy and the theory of Gibbs free energy. Higher uniformity is attributed to the confinement of the filamentary switching process. The presence of a larger number of interface traps, which will create a beneficial electric field to facilitate the drift of oxygen vacancies, is believed to be responsible for the lower operation voltages in the Ge/TaO x devices. © 1980-2012 IEEE.
Resumo:
BACKGROUND: Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell-material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. OBJECTIVE AND METHODS: In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. RESULTS: The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells.
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.
Resumo:
The Chinese Tam-Tam exhibits non-linear behavior in its vibro-acoustic response. The frequency content of the response during free, unforced vibration smoothly changes, with energy being progressively smeared out over a greater bandwidth with time. This is used as a motivating case for the general study of the phenomenon of energy cascading through weak nonlinearity. Numerical models based upon the Fermi-Pasta-Ulam system of non-linearly coupled oscillators, modified with the addition of damping, have been developed. These were used to study the response of ensembles of systems with randomized natural frequencies. Results from simulations will be presented here. For un-damped systems, individual ensemble members exhibit cyclical energy exchange between linear modes, but the ensemble average displays a steady state. For the ensemble response of damped systems, lightly damped modes can exhibit an effective damping which is higher than predicated by linear theory. The presence of a non-linearity provides a path for energy flow to other modes, increasing the apparent damping spectrum at some frequencies and reducing it at others. The target of this work is a model revealing the governing parameters of a generic system of this type and leading to predictions of the ensemble response.
Resumo:
Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.