149 resultados para LSCNO thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced piezoresponse force microscopy was used to study flux closure vortexlike structures of 90° ferroelastic domains at the nanoscale in thin ferroelectric lead zirconium titanate (PZT) films. Using an external electric field, a vortexlike structure was induced far away from a grain boundary, indicating that physical edges are not necessary for nucleation contrary to previous suggestions. We demonstrate two different configurations of vortexlike structures, one of which has not been observed before. The stability of these structures is found to be size dependent, supporting previous predictions. © 2010 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using spcctroscopic ellipsometry (SE), we have measured the optical properties and optical gaps of a series of amorphous carbon (a-C) films ∼ 100-300 Å thick, prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.%, as measured by electron energy loss spectroscopy (EELS). The Taue optical gaps of the a-C films increase monotonically from 0.65 eV for 20 at.% sp3 C to 2.25 eV for 76 at.% sp3 C. Spectra in the ellipsometric angles (1.5-5 eV) have been analyzed using different effective medium theories (EMTs) applying a simplified optical model for the dielectric function of a-C, assuming a composite material with sp2 C and sp3 C components. The most widely used EMT, namely that of Bruggeman (with three-dimensionally isotropic screening), yields atomic fractions of sp3 C that correlate monotonically with those obtained from EELS. The results of the SE analysis, however, range from 10 to 25 at.% higher than those from EELS. In fact, we have found that the volume percent sp3 C from SE using the Bruggeman EMT shows good numerical agreement with the atomic percent sp3 C from EELS. The SE-EELS discrepancy has been reduced by using an optical model in which the dielectric function of the a-C is determined as a volume-fraction-weighted average of the dielectric functions of the sp2 C and sp3 C components. © 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using spectroscopic ellipsometry (SE), we have measured the optical properties of amorphous carbon (a-C) films ∼ 10-30 nm thick prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.% as measured by electron energy loss spectroscopy (EELS), and a range of optical gaps from 0.65 eV (20 at.% sp3 C) to 2.25 eV (76 at.% sp3 C) as measured by SE. SE data from 1.5 to 5 eV have been analyzed by applying the most widely used effective medium theory (EMT) namely that of Bruggeman with isotropic screening, assuming a model of the material as a composite with sp2 C and sp3 C components. Although the atomic fractions of sp3 C deduced by SE with the Bruggeman EMT correlate monotonically with those obtained by EELS, the SE results range from 10 to 25 at.% higher. The possible origins of this discrepancy are discussed within the framework of an optical composite. Improved agreement between SE and EELS is obtained by employing a simple form for the EMT, in which the effective dielectric function is determined as a volume-fraction-weighted average of the dielectric functions of the two components. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrahedral amorphous carbon (ta-C) thin films are a promising material for use as biocompatible interfaces in applications such as in-vivo biosensors. However, the functionalization of ta-C film surface, which is a pre-requisite for biosensors, remains a big challenge due to its chemical inertness. We have investigated the bio-functionalization of ta-C films fabricated under specific physical conditions through the covalent attachment of functional biomolecular probes of peptide nucleic acid (PNA) to ta-C films, and the effect of fabrication conditions on the bio-functionalization. The study showed that the functional bimolecular probes such as protected long-chain ω-unsaturated amine (TFAAD) can be covalently attached to the ta-C surface through a well-defined structure. With the given fabrication process, electrochemical methods can be applied to the detection of biomolecular interaction, which establishes the basis for the development of stable, label-free biosensors. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador: