28 resultados para L22 - Firm Organization and Market Structure
Resumo:
The aim of this paper is to propose a novel reference framework that can be used to study how different kinds of innovation can result in better business performance and how external factors can influence both the firm's capacity to innovate and innovation itself. The value of the framework is demonstrated as it is applied in an exploratory study of the perceptions of public policy makers and managers from two European regions - the Veneto Region in Italy and the East of England in the UK. Amongst other things, the data gathered suggest that managers are generally less convinced than public policy makers, that the innovativeness of a firm is affected by factors over which policy makers have some control. This finding poses the question "what, if any, role can public policy makers play in enhancing a company's competitiveness by enabling it to become more innovative?".
Resumo:
The effects of growth temperature and V/III ratio on the morphology and crystallographic phases of InP nanowires that are grown by metal organic chemical vapour deposition have been studied. We show that higher growth temperatures or higher V/III ratios promote the formation of wurtzite nanowires while zinc-blende nanowires are favourableat lower growth temperatures and lower V/III ratios. A schematic map of distribution of zinc-blende and wurtzite structures has been developed in the range of growth temperatures (400-510 °C) and V/III ratios (44 to 700) investigated in this study. © 2010 IOP Publishing Ltd.
Resumo:
The drive for low emission combustion systems encourages applications using premixed flames. Yet in many applications, considerations of flame stability or mixing times lead to systems with neither premixed nor diffusion flames, which are often called technically premixed or stratified flames. In this talk we discuss the current state of understanding of the effect of mixing and extent of stratification on the structure, microstructure and dynamics of selected turbulent stratified flames. Over the past few years, a significant database of scalar and velocity data has been built to analyze the effects of unmixedness on local and global flame structure. Microscale studies of the flame structures show in detail how the effect of local stratification affects (or not!) the flame structure, flame surface density and scalar dissipation rates, and production of selected species. The experiments place exacting demands on current spectroscopic diagnostics, and reveal the progress and limits to our understanding of turbulent flames in general. The dynamics of stratified flames with respect to instabilities is also shown to be very rich, as the particular shape of the flames and the stabilization points are is significantly affected by the fuel distribution, modifying the rate and location of heat release, and thus the coupling with the surrounding acoustics and determining the onset of self-excitations.
Resumo:
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.