27 resultados para Knight, Marcus
Resumo:
This paper demonstrates how a finite element model which exploits domain decomposition is applied to the analysis of three-phase induction motors. It is shown that a significant gain in cpu time results when compared with standard finite element analysis. Aspects of the application of the method which are particular to induction motors are considered: the means of improving the convergence of the nonlinear finite element equations; the choice of symmetrical sub-domains; the modelling of relative movement; and the inclusion of periodic boundary conditions. © 1999 IEEE.
Resumo:
In this paper a recently published finite element method, which combines domain decomposition with a novel technique for solving nonlinear magnetostatic finite element problems is described. It is then shown how the method can be extended to, and optimised for, the solution of time-domain problems. © 1999 IEEE.
Resumo:
This paper presents the results of experimental and simulation investigations of the breakdown of losses in a small inverter fed induction motor. Factors that are considered include the impact of skew, excitation voltage waveform shape and PWM switching frequency. Detailed finite element simulations of the motor performance are carried out for the various conditions, with simulation results compared to calorimetric test results. © 2005 IEEE.
Resumo:
This paper presents the results of an investigation into the impact of pulse width modulation (PWM) switching schemes on power losses in induction motors and their inverter drives. The PWM schemes considered include sinusoidal PWM, spacevector PWM and discontinuous PWM. Both experimental results and simulated predictions are presented for fractional horsepower and small integral horsepower motors. Direct loss measurements have been carried out using a calorimetric test rig; detailed simulations of the skewed motors have been carried out using multi-slice time-stepped 2D FEA. The simulated and measured losses under the different modulation schemes are compared and discussed. © 2006 IEEE.
Resumo:
The paper describes the use of optical fiber Brillouin Optical Time Domain Reflectometry (BOTDR) to monitor the strain distribution in an existing tunnel while a twin tunnel was bored at close-proximity. The twin circular bored tunnels between Serangoon and Bartley stations on the new Circle Line Stage 3 subway in Singapore were constructed at close-proximity to avoid underpinning the foundations of adjacent buildings. The minimum clear separation of the two tunnels is 2.3m (0.4 times the tunnel diameter). The Outer Tunnel was constructed first, followed by the Inner Tunnel, with the earth-pressure balance tunnel boring machines maintained at a minimum of 100m apart. In this trial application of BOTDR, the strain distribution along the Outer Tunnel was measured, in order to monitor its deformation due to the boring of the Inner Tunnel at close-proximity. The aim of the trial application was to determine the practicality of this monitoring method for future use in 'live' tunnels. This paper compares the measurements obtained from optical fiber BOTDR with conventional methods of tunnel monitoring and describes preliminary installation and workmanship guidelines derived from lessons learnt during this trial. © 2007 ASCE.
Resumo:
This paper presents an investigation into the losses in a three-phase induction motor under different pulse width modulation (PWM) excitation conditions. The impacts of Sinusoidal PWM, Space Vector PWM and Discontinuous PWM on machine loss are compared and studied. Finite element analysis simulations are employed to predict the machine losses with the loss breakdown analysis under different PWM schemes. Direct Calorimetric measurements are utilized to verify the finite element modeling and provide direct quantifications of machine loss under modern PWM techniques. © 2008 IEEE.
Resumo:
An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.